top of page
  • Writer's pictureGraham Exelby

Long COVID Acknowledgements and References

Acknowledgements:

  1. Dr Valerio Vittone, PH.D (biochemistry, molecular biology and virology) for his ongoing research into the underlying DNA and metabolic pathways that underpin POTS and long COVID. https://www.drvaleriovittone.com/

  2. Special thanks to Prof Jon Jenkins, retired infectious diseases physician, for his invaluable and ongoing assistance working through the complex issues pertaining to the Covid infection, to his providing peer review in an area where there are few medical guidelines, and chairing the Long COVID Management Team on the Gold Coast to look at management from various Medical Specialists from May 2022.

  3. Special thanks to Prof Pete Smith, allergist, for his guidance when there are “roadblocks” to overcome, in particular with his assistance with the emerging Glymphatic information and the DNA mutations that affect the function.

  4. Special acknowledgement of the outstanding research from the Griffith University CIFS Research team

  5. Special thanks to Mr David Haynes, acupuncturist who has been working in combination to demonstrate effective control of autonomic instability, especially the hyper-adrenergic type, with “Kiiko Matsumoto” style acupuncture. Using heart rate variability studies, and the ability to reduce the autonomic instability with his “Kiiko” style acupuncture, he demonstrated the ability to reduce QT prolongation.

  6. QScan and Mermaid Beach Radiology for assistance in research and interpretation of MRI cerebral hyperintensities and developing protocols using the advanced Spectral CTs

  7. QXRay for providing dedicated sonographers for various dynamic ultrasound scans, and MRI neurological changes

  8. Absolute Ultrasound for providing sonographers for the multiple dynamic doppler ultrasounds to investigate the mechanical “drivers” in particular in Thoracic Outlet Syndrome, Median Arcuate Ligament Syndrome, Nutcracker Syndrome and May-Thurner Syndrome

  9. Mermaid Molecular Imaging for SPECT brain protocols

  10. Holly Charlton, dietician who has spent the time to train in the dietary management of these very difficult problems.

  11. The content in Thoracic Outlet Syndrome has been produced with a large contribution by Kjetil Larsen. His work is reproduced with his permission, and as a source of information in the developing work including Jugular Outlet Compression. Details of the impact of posture and management are seen on his website: https://mskneurology.com/how-truly-treat-thoracic-outlet-syndrome

  12. The author wishes to thank the invaluable assistance of QML Laboratories for providing access to multiple holter monitors that have been calibrated to measure R-R intervals to provide an assay of HRV over 24 hours,

  13. Thanks to Dr Rebecca Ryan, Gastroenterologist for her assistance in mast cells, Dr Sahan Bandara, Respiratory Physician, and Dr Charles Appleton, pathologist from QML for his patience when we find pathology issues that are not apparent in the literature.

  14. Then the team of physiotherapists who have been assisting developing a program to treat the POTS and now Long COVID patients- Crid Way, Adam Antoniolli, Tom Atkins, Brendan McLeod, Tiele Santos, Indie Franke, Stuart Stephenson, Melanie Roberts, Drew Singleton, Roger O'Toole, Liz Fong.

  15. To the ever- patient and enthusiastic Craig Phillips (DMA Pilates), who has provided 13 years of assistance looking at the mechanical forces at play in POTS, fibromyalgia, migraine and their co-morbidities, and continues to be involved in the emerging research, a special thank you

References:


1. Lou, J et al. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol. 2021 January 18; 2: . doi:10.17879/freeneuropathology-2021-2993.

2. Yoo, Sun et al,: Factors Associated with Post-Acute Sequelae of SARS-CoV-2 (PASC) After Diagnosis of Symptomatic COVID-19 in the Inpatient and Outpatient Setting in a Diverse Cohort. 2022. J GenIntern Med DOI: 10.1007/s11606-022-07523-3

3. Huang,L. et al: Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. 2022. The Lancet Respiratory Medicine. https://doi.org/10.1016/S2213-2600(22)00126-6

4. Shin Jie Yong (2021) Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments, Infectious Diseases, 53:10, 737-754, DOI:10.1080/23744235.2021.1924397

5. Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018; 9: 7204-7218. Retrieved from https://www.oncotarget.com/article/23208/text/

6. Peddapalli, A., et al: Demystifying Excess Immune Response in COVID-19 to Reposition an Orphan Drug for Down-Regulation of NF-κB: A Systematic Review. Viruses 2021, 13, 378. https://doi.org/10.3390/ v13030378

7. Afrin, Lawrence; Weinstock, Leonard; Molderings, Gerhard. Covid-19 Hyperinflammation and post-Covid 19 may be rooted in Mast Cell Activation Syndrome. 2020: International Journal of Infectious Diseases 100, 327-332.

8. Malone,R. et al. Covid-19: Famotidine,Histamine,Mast Cells and Mechanisms. 2021. Frontiers in Pharmacology, https://www.frontiersin.org/articles/10.3389/fphar.2021.633680/full

9. Petrovic,V. et al.: Pathophysiology of Cardiovascular Complications in COVID-19. 2020. https://www.frontiersin.org/articles/10.3389/fphys.2020.575600/full

10. Wikipedia. Adaptive Immune System. https://en.wikipedia.org/wiki/Adaptive_immune_system

11. Wechler,J. et al.: Mast cell activation is associated with post-acute COVID-19 syndrome. Allergy. 2021. https://onlinelibrary.wiley.com/doi/10.1111/all.15188

12. Ragab D, Salah Eldin H, Taeimah M, Khattab R and Salem R (2020) The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 11:1446. doi: 10.3389/fimmu.2020.01446

13. Brandão SCS, Ramos JOX, Dompieri LT, Godoi ETAM, Figueiredo JL, Sarinho ESC, Chelvanambi S, Aikawa M. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine Growth Factor Rev. 2021 Apr;58:102-110. doi: 10.1016/j.cytogfr.2020.09.002. Epub 2020 Sep 21. PMID: 32988728; PMCID: PMC7505161.

14. Raj,S., et al: Long-Covid postural tachycardia syndrome: an American Autonomic Society Statement: 2021. Clinical Autonomic Research.

15. Weinstock,L., et al, Mastcell activation symptomsare prevalent in Long-COVID, 2021. International Journal of Infectious Diseases 112 (2021) 217-226

16. Afrin,L et al. Characterization of Mast Cell Activation Syndrome, 2017. Am J Med Sci 353 (3) 207- 215

17. Maltezou,H et al.: Post-COVID Syndrome: An Insight on Its Pathogenesis. Vaccines 2021, 9, 497. https://doi.org/10.3390/vaccines9050497

18. Fajgenbaum,D. et al: Cytokine Storm. 2020. New England Journal of Medicine. DOI: 10.1056/NEJMra2026131

19. Mikita, N et al., Mast Cells in Collagen Diseases. 2019. EnPress. DOI: http://dx.doi.org/10.24294/ti.v3.i2.96

20. European Society of Cardiology Guidance for the Diagnosis and management of Cardiovascular Disease during the Covid-19 Pandemic: Part 1- epidemiology, pathophysiology and Diagnosis. European Heart Journal (2022) 43, 1033–1058 https://doi.org/10.1093/eurheartj/ehab696

21. Chernayak, B. et al., COVID-19 and Oxidative Stress. Biochemistry (Moscow), 2020, Vol. 85, Nos. 12 13, pp. 1543 1553. © Pleiades Publishing, Ltd., 2020.

22. Euro Heart J Suppl, Vol 23, Issue Supplement E, October 2021. https://doi.ord/10.1093/eurheartj/suab080

23. Huang L, Li X, Gu X, Zhang H, Ren L, Guo L, Liu M, Wang Y, Cui D, Wang Y, Zhang X, Shang L, Zhong J, Wang X, Wang J, Cao B. Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. Lancet Respir Med. 2022 May 11 [Epub ahead of print]. doi: 10.1016/S2213-2600(22)00126-6. PMID: 35568052

24. Ennis,M, Tiligada, K. Histamine receptors and COVID-19. Inflammation Research (2021) 70:67–75. https://doi.org/10.1007/s00011-020-01422-1

25. Su, Y.,et al, Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae, Cell (2022), doi: https://doi.org/10.1016/j.cell.2022.01.014.

26. Blitshteyn, S., Whitelaw,S.” Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID‑19 infection: a case seriesof 20 patients. 2021. Immunologic Research

27. Gunning,W., Grubb, B.: Platelet Storage Pool Deficiency and Elevated Inflammatory Biomarkers are Prevalent in Postural Orthostatic Tachycardia Syndrome. Cells. 2022. https://www.mdpi.com/2073-4409/11/5/774/htm.

28. Fernandez-Ayala, D, Navas, P., Lopez-LLuch, G.: Age-related mitochondrial dysfunction as a key factor in COVID-19 diseases. https://doi.org/10.1016/j.exger.2020.111147

29. Larsen,N.et al, Preparing for the long-haul: Autonomic complications of COVID-19. 2021. Autonomic Neuroscience: Basic and Clinical 235 (2021) 102841

30. Parasher,A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgraduate Medical Journal 2021;97:312-320

31. Hippisley-Cox J, Young D, Coupland C, et al. Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart 2020;106:1503-1511

32. Jung, H.E.; Lee, H.K. Current Understanding of the Innate Control of Toll-like Receptors in Response to SARS-CoV-2 Infection. Viruses 2021, 13, 2132. https://doi.org/10.3390/v13112132

33. Khanmohammadi,S, Rezaei,N. Role of Toll-like receptors in the pathogenesis of COVID-10. Journal of Medical Virology. 2020 DOI: 10.1002/jmv.26826

34. Luo M, Liu J, Jiang W, Yue S, Liu H, Wei S. IL-6 and CD8+ T cell counts combined are an early predictor of in-hospital mortality of patients with COVID-19. JCI Insight. 2020 Jul 9;5(13):e139024. doi: 10.1172/jci.insight.139024. PMID: 32544099; PMCID: PM

35. Yang,P. et al. Increased circulating levels of interleukin-6 and CD8+ T cell exhaustion are associated with progression of COVID-19. Infectious Diseases of Poverty. 2020. https://doi.org/10.1186/s40249-020-00780-6

36. Fang,S. et al. Decreased complement C3 levels are associated with poor prognosis in patients with COVID-19: A retrospective cohort study. International Immunopharmacology. 2020. https://doi.org/10.1016/j.intimp.2020.107070

37. Cheng,W. et al. Complement C3 identified as a unique risk factor for disease severity among young COVID-19 patients in Wuhan, China. Scientific Reports. 2021. https://doi.org/10.1038/s41598-021-82810-3

38. Kim, A et al. The beneficial and pathogenic roles of complement in COVID-19. Cleveland Clinic Journal of Medicine. 2022. doi:10.3949/ccjm.87a.ccc065

39. Zinellu A and Mangoni AA (2021) Serum Complement C3 and C4 and COVID-19 Severity and Mortality: A Systematic Review and Meta- Analysis With Meta-Regression. Front. Immunol. 12:696085. doi: 10.3389/fimmu.2021.696085

40. https://en.wikipedia.org/wiki/Complement_system

41. Exelby,G. Postural Orthostatic Tachycardia Syndrome (POTS). 2022. https://Dysautonomia.com.au

42. Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of COVID-19. Nat Med (2022). Published 7 February 2022. https://doi.org/10.1038/s41591-022-01689-3

43. Carnahan,J . 9 Proven Treatments for Mast Cell Activation Syndrome. https://www.jillcarnahan.com/2019/04/25/9-proven-treatments-for-mast-cell-activation-syndrome-plus-a-surprising-new-comer/

44. Vittone,V.: Epigenetics. https://www.drvaleriovittone.com/

45. Ramakrishnan RK, Kashour T, Hamid Q, Halwani R and Tleyjeh IM (2021) Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front. Immunol. 12:686029. doi: 10.3389/fimmu.2021.686029

46. Patel S, Singh A, Misra V, Misra, S, Dwivedi M, Trivedi P. Levels of interleukins 2, 6, 8, and 10 in patients with irritable bowel syndrome. Indian J Pathol Microbiol. 2017 Jul-Sep;60(3):385-389. https://www.ncbi.nlm.nih.gov/pubmed/28937377

47. Fasano,A. Zonulin and Its Regulation of Intestinal Barrier Function: The Biological Door to Inflammation, Autoimmunity, and Cancer. 2011https://doi.org/10.1152/physrev.00003.2008

48. Creative Diagnostics. What is Zolulin. 2018 https://www.creative-diagnostics.com/blog/index.php/what-is-zonulin/

49. Liu, l., Liu, B., Chen,S., Wang, M., Liu, Y., Zhang, Y, Yao, S. Visceral and somatic hypersensitivity, autonomic cardiovascular dysfunction and low- grade inflammation in a subset of irritable bowel syndrome patients Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) 2014 15(10):907-914

50. Coss-Adame, E., Rao, S. Brain and Gut Interactions in Irritable Bowel Syndrome: New Paradigms and New Understandings Curr Gastroenterol Rep. 2014 April ; 16(4): 379. doi:10.1007/s11894-014-0379-z.

51. Margaret M. Leach, Craig Phillips, David Joffe, Charles Fisher, Michael Appleberg, Michael Jones, John E. Kellow, Irritable Bowel Syndrome Patients Exhibit Post-Prandial Autonomic Dysfunction. Gastroenterology. https://www.gastrojournal.org/article/S0016-5085(00)82623-2/pdf

52. Bashashati,M.,Moradi, M., Sarosiek,I.: Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine. 2017 Nov;99:132-138. doi: 10.1016/j.cyto.2017.08.017. Epub 2017 Sep 5. https://www.ncbi.nlm.nih.gov/pubmed/28886490

53. Karantanos,T., Markoutsaki,T., Gazouli,M., Anagnou, N., Karamanolius,D. Current insights in to the pathophysiology of Irritable Bowel Syndrome Gut Pathog. 2010; 2: 3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876056/

54. https://www.mdpi.com/2073-4409/11/5/774/htm.

55. Gracia-Ramos,A., Martin-Nares, E., Hernandez-Molina, G.: New Onset of Autoimmune Diseases Following Covid-19 Diagnosis. Cells 2021,10, 3592. https://www.mdpi.com/joournal/cells

56. Wikipedia. Epigenetics. https://en.wikipedia.org/wiki/Epigenetics

57. Wikipedia. Catechol-O-methyltransferase .https://en.wikipedia.org/wiki/Catechol-O-methyltransferase

58. Zhu BT, Liehr JG. Inhibition of catechol O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J Biol Chem. 1996 Jan 19;271(3):1357-63. doi: 10.1074/jbc.271.3.1357. PMID: 8576124.

59. Tahara T, Shibata T, Arisawa T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I. Impact of catechol-O-methyltransferase (COMT) gene polymorphism on promoter methylation status in gastric mucosa. Anticancer Res. 2009 Jul;29(7):2857-61. PMID: 19596974.

60. Bot, I., Shi, G., Kovanen, P.,Mast Cells as Effectors in Atherosclerosis. 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304944/

61. Ragab,D et al, The Covid-19 Cytokine Storm; What we know So Far. 2020. Frontiers in Immunology.

62. Afrin,L. Presentation, Diagnosis, and Management of Mast Cell Activation Syndrome. 2013, Nova Science Publishers Inc

63. Marshall-Gradisnik et al. Examination of Single Nucleotide Polymorphisms (SNPs) in Transient Receptor Potential (TRP) Ion Channels in Chronic Fatigue Syndrome Patients. Immunology and Immunogenetics Insights 2015:7 1–6 doi:10.4137/III.S25147.

64. Novak P, Giannetti MP, Weller E, Hamilton MJ, Castells M. Mast cell disorders are associated with decreased cerebral blood flow and small fiber neuropathy. Ann Allergy Asthma Immunol. 2022 Mar;128(3):299-306.e1. doi: 10.1016/j.anai.2021.10.006. Epub 2021 Oct 11. PMID: 34648976.

65. Cazzato D, Castori M, Lombardi R, et al. Small fiber neuropathy is a common feature of Ehlers-Danlos syndromes. Neurology. 2016;87(2):155-159. doi:10.1212/WNL.0000000000002847

66. Novak, P. et al. Mast cell disorders are associated with decreased cerebral blood flow and small fiber neuropathy. 2021. https://www.annallergy.org/article/S1081-1206(21)01155-8/fulltext

67. Abrams RMC, Simpson DM, Navis A, Jette N, Zhou L, Shin SC. Small fiber neuropathy associated with SARS-CoV-2 infection. Muscle Nerve. 2022 Apr;65(4):440-443. doi: 10.1002/mus.27458. Epub 2021 Nov 22. PMID: 34766365; PMCID: PMC8661991.

68. Oaklander AL, Mills AJ, Kelley M, Toran LS, Smith B, Dalakas MC, Nath A. Peripheral Neuropathy Evaluations of Patients With Prolonged Long COVID. Neurol Neuroimmunol Neuroinflamm. 2022 Mar 1;9(3):e1146. doi: 10.1212/NXI.0000000000001146. PMID: 35232750; PMCID: PMC8889896.

69. Barros A, Queiruga-Piñeiro J, Lozano-Sanroma J, et al. Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of ocular surface disease. Ocul Surf. 2022;23:40-48. doi:10.1016/j.jtos.2021.10.010

70. De Silva. The Costoclavicular Syndrome: a New Cause. Annals of the Rheumatic Diseases. 1986. 45, 916-920

71. Prandoni P et al. Prevalence of pulmonary embolism among patients hospitalized for syncope. N Engl J Med 2016 Oct 20; 375:1524

72. Pretorius,E. et al.: Persistent clotting protein pathology in Long COVID/Post‑Acute Sequelae of COVID‑19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol (2021) 20:172. https://doi.org/10.1186/s12933-021-01359-7

73. Pretorius et al.: Prevalence of Amyloid Blood Clots in COVID-19 in plasma. https://www.researchgate.net/publication/343313974_Prevalence_of_amyloid_blood_clots_in_COVID-19_plasma

74. Bell, D., Laubscher, G., Pretorius, E.: A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J (2022) 479 (4): 537–559. https://doi.org/10.1042/BCJ20220016

75. Fard,M et al: Thrombosis in COVID-19 Infection: Rome of platelet activation-mediated immunity. Thrombosis Journal (2021) 19:59 https://doi.org/10.1186/s12959-021-00311-9

76. Jana, A. K. et al. (2021). The effect of SARS-COV-2 Infections on Amyloid Formation of Serum Amyloid A. bioRxiv preprint. doi: https://doi.org/10.1101/2021.05.18.444723,

77. Katsoulis,I et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ 2022;376:e069590

78. Mukherjee, R. et al. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. 2021. JBC Research Article. https://www.sciencedirect.com/science/article/pii/S0021925821007250

79. Cuker,A., Peyvandi, F. COVID-19: Hypercoagulability. 2021. https://www.uptodate.com/contents/covid-19-hypercoagulability?topicRef=129312&source=related_link

80. Dunn J, Grider MH. Physiology, Adenosine Triphosphate. [Updated 2022 Feb 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls

81. Chistiakov, D.et al. The role of mitochondrial dysfunction in cardiovascular disease: a brief review. 2018: ANNALS OF MEDICINE, 2018 VOL. 50, NO. 2, 121–127 https://doi.org/10.1080/07853890.2017.1417631

82. Filler, K. et al. Association of mitochondrial dysfunction and fatigue: A review of the literature. 2014. http://www.journals.elsevier.com/bba-clinical/

83. Mohiuddin, M., Kasahara, K.: The emerging role of oxidative stress in complications of COVID-19 and potential therapeutic approach to diminish oxidative stress. https://doi.org/10.1016/j.rmed.2021.106605

84. Gill,R., Tsung,A., Billiar,T. Linking oxidative stress to inflammation: Toll-like receptors. 2010. https://doi.org/10.1016/j.freeradbiomed.2010.01.006 https://www.sciencedirect.com/science/article/abs/pii/S0891584910000110

85. Oxidative Stress. Oregon State University, Linus Pauling Institute. http://lpi.oregonstate.edu/infocenter/

86. Wikipedia. Redox. https://en.wikipedia.org/wiki/Redox#:~:text=Redox%20(reduction%E2%80%93oxidation%2C%20%2F,chemical%20or%20atoms%20within%20it.

87. Peddapalli, A., et al: Demystifying Excess Immune Response in COVID-19 to Reposition an Orphan Drug for Down-Regulation of NF-κB: A Systematic Review. Viruses 2021, 13, 378. https://doi.org/10.3390/ v13030378

88. Cecchini,R and Cecchini,A. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. 2020. https://doi.org/10.1016/j.mehy.2020.110102

89. Wikipedia. NOD-like receptor. https://en.wikipedia.org/wiki/NOD-like_receptor

90. Ahmad SA, Mohammed SH, Abdulla BA, Salih BK, Hassan MN, Salih AM, et al. Post COVID – 19 neurological disorders; a single‑center experience; a case series. Ann Med Surg 2022:103508. https://doi.org/10.1016/j.amsu.2022.103508.

91. Wikipedia.Microglia https://en.wikipedia.org/wiki/Microglia

92. Kakavas,S. et al. The Complex Interplay betweenImmunonutrition, Mast Cells,and Histamine Signaling in COVID-19. 2021 Nutrients. https://doi.org/10.3390/nu13103458

93. Wikipedia. Arrestin. https://en.wikipedia.org/wiki/Arrestin

94. Goldstein,D. The possible association between COVID-19 and postural tachycardia syndrome. 2021. Elsevier Inc on Behalf of Heart Rhythm Society. https://doi.org/10.1016/j.hrthm.2020.12.007

95. Wikipedia. Adaptive Immune System. https://en.wikipedia.org/wiki/Adaptive_immune_system

96. Ryter,S. et al.: Cell Death and Repair in Lung Disease. 2014: Pathology of Human Disease. https://www.sciencedirect.com/topics/neuroscience/pyroptosis

97. Issa Al-Jahdhami, Khalid Al-naamani, Adhra Al-Mawali, Sami M. Bennji. Respiratory Complications after COVID-19. Oman Med J. 2022 Jan; 37(1): e343. doi: 10.5001/omj.2022.52

98. Rathmann, W., Kuss, O., Kostev, K.: Incidence of newly diagnosed diabetes after Covid-19. 2022. Diabetologia. https://doi.org/10.1007/s00125-022-05670-0

99. Mukherjee, R. et al. Famotidine inhibits toll-like receptor 3-mediated inflammatory signalingin SARS-CoV-2 infection. 2021. JBC Research Article. https://www.sciencedirect.com/science/article/pii/S0021925821007250

100. Rezel-Potts E, Douiri A, Sun X, Chowienczyk PJ, Shah AM, Gulliford MC (2022) Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK. PLoS Med 19(7): e1004052. https://doi.org/10.1371/journal.pmed.1004052

101. Cheung KS et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology 2020 Apr 3; [e-pub]. (https://doi.org/10.1053/j.gastro.2020.03.065. opens in new tab)

102. Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021;70:698-706.

103. Puoti,M., Rybak,A., Kiparissi,F., Gaynor, E., Borrolli,O. SARS-Co-2 and the Gastrointestinal Tract in Children, Front. Pediatr., 22 February 2021 Sec. Pediatric Immunology https://doi.org/10.3389/fped.2021.617980

104. Meringer,H. & Mehandru,S. Gastrointestinal post-acute COVID-19 syndrome. 2022, Nature Reviews. https://www.nature.com/articles/s41575-022-00611-z

105. Low, J et al. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol. 2021 January 18; 2: . doi:10.17879/freeneuropathology-2021-2993.

106. McNamara,D. Each COVID-19 Reinfection Increases Health Risks. 2022. https://www.medscape.com/viewarticle/976772_print

107. Al-Aly, Z., Bowe, B., Xie. Y. 2022. Outcomes of SARS-CoV-2 Reinfection. Research Square. https://doi.org/10.21203/rs.3.rs-1749502/v1

108. Thompson A, Morgan C, Smith P, et al. Cerebral venous sinus thrombosis associated with COVID-19. Practical Neurology 2021;21:75-76. https://pn.bmj.com/content/21/1/75.citation-tools

109. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Mol Neurobiol. 2017 Mar;54(2):997-1007. doi: 10.1007/s12035-016-9720-x. Epub 2016 Jan 21. PMID: 26797518

110. Canas LS, Molteni E, Deng J, et al. Profiling post-COVID syndrome across different variants of SARS-CoV-2. medRxiv. 2022.07.28.22278159; doi: https://doi.org/10.1101/2022.07.28.2227815

111. Hicks, R. Three Distinct Types of Long-Covid Identified. Medscape News UK - 01 August 2022

112. Larsen,K. Innovative Rehabilitation of Musculoskeletal and Neurological Disorders. https://mskneurology.com/

113. Eaton‑Fitch et al. Impaired TRPM3‑dependent calcium influx and restoration using Naltrexone in natural killer cells of myalgic encephalomyelitis/chronic fatigue syndrome patients Journal of Translational Medicine https://doi.org/10.1186/s12967‑022‑03297‑8

114. Cabanas, H., Muraki, K., Eaton, N. et al. Loss of Transient Receptor Potential Melastatin 3 ion channel function in natural killer cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis patients. Mol Med 24, 44 (2018)https://doi.org/10.1186/s10020-018-0046-1

115. Barnden,L., et al: Intra brainstem connectivity is impaired in chronic fatigue syndrome. 2019. https://www.journals.elsevier.com/neuroimage-clinical

116. Wikipedia. Catechol-O-methyltransferase .https://en.wikipedia.org/wiki/Catechol-O-methyltransferase

117. Zhu BT, Liehr JG. Inhibition of catechol O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J Biol Chem. 1996 Jan 19;271(3):1357-63. doi: 10.1074/jbc.271.3.1357. PMID: 8576124.

118. Tahara T, Shibata T, Arisawa T, Nakamura M, Yamashita H, Yoshioka D, Okubo M, Maruyama N, Kamano T, Kamiya Y, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I. Impact of catechol-O-methyltransferase (COMT) gene polymorphism on promoter methylation status in gastric mucosa. Anticancer Res. 2009 Jul;29(7):2857-61. PMID: 19596974

119. Van der Knaap LJ, Schaefer JM, Franken IH, Verhulst FC, van Oort FV, Riese H. Catechol-O-methyltransferase gene methylation and substance use in adolescents: the TRAILS study. Genes Brain Behav. 2014 Sep;13(7):618-25. doi: 10.1111/gbb.12147. Epub 2014 Jun 24. PMID: 24902721.

120. Özen Ö, Ünal Ö, Avcu S. Flow volumes of internal jugular veins are significantly reduced in patients with cerebral venous sinus thrombosis. Curr Neurovasc Res. 2014 Feb;11(1):75-82. ncbi.nlm.nih.gov/pubmed/24321024

121. Kelso, J.(Ed): COVID-19: Allergic reactions to SARS-CoV-2 vaccines. 2021. https://www.uptodate.com/contents/covid-19-allergic-reactions-to-sars-cov-2-vaccines?sectionName=Immediate%20reactions%20to%20an%20initial%20dose&topicRef=8357&anchor=H3255843344&source=see_link

122. Jenssen,N et al. The Glymphatic System- A Beginners’s Guide. Neurochem Res. 2015 December ; 40(12): 2583–2599. doi:10.1007/s11064-015-1581-6.

123. Rasmussen,M., Mestre,H., Nedergaard,M. The glymphatic pathway in neurological disorders. 2018. Lancet Neurology. https://www.thelancet.com/journals/laneur/article/PIIS1474-4422%2818%2930318-1/fulltext

124. Mogensen, F.L.-H.; Delle, C.; Nedergaard, M. The Glymphatic System (En)during Inflammation. Int. J. Mol. Sci. 2021, 22, 7491. https://doi.org/10.3390/ijms22147491

125. Kakavas,S. et al. The Complex Interplay betweenImmunonutrition, Mast Cells,and Histamine Signaling in COVID-19. 2021 Nutrients. https://doi.org/10.3390/nu13103458

126. Van den Berg EH, Corsetti JP, Bakker SJL, Dullaart RPF (2019) Plasma ApoE elevations are associated with NAFLD: The PREVEND Study. PLoS ONE14(8): e0220659. https://doi.org/ 10.1371/journal.pone.0220659

127. Lehmann A, Prosch H, Zehetmayer S, Gysan MR, Bernitzky D, Vonbank K, et al. (2021) Impact of persistent D-dimer elevation following recovery from COVID-19. PLoS ONE 16(10): e0258351. https://doi.org/10.1371/journal. pone.0258351

128. Begic,E., Naser,N, Begic,N. Hypercoagulability in COVID-19 and post-COVID patients - characteristics and current treatment guidelines. 2021. E-journal of Cardiology Practice. https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-21/hypercoagulability-in-covid-19-and-post-covid-patients-characteristics-and-cur

129. Ghildyal P, Manchanda R. Neurotransmission by ATP: new insights, novel mechanisms. Indian J Biochem Biophys. 2002 Jun;39(3):137-47. PMID: 22905383.

130. Wikipedia. ATP Hydrolysis. https://en.wikipedia.org/wiki/ATP_hydrolysis

131. Patterson AD, Gonzalez FJ, Idle JR. Xenobiotic metabolism: a view through the metabolometer. Chem Res Toxicol. 2010;23(5):851-860. doi:10.1021/tx100020p

132. Ribas,V., Garcia-Ruia,C., Fernandez-Checa,J Glutathione and Mitochondria. 2014. Front.Pharmacol. Sec. Experimental Pharmacology and Drug Discovery. https://www.frontiersin.org/articles/10.3389/fphar.2014.00151/full

133. Glutathione. https://www.webmd.com/vitamins/ai/ingredientmono-717/glutathione

134. Whelan,C.reviewed by Wilson,D. https://www.healthline.com/health/glutathione-benefits

135. Wikipedia. Microglia. https://en.wikipedia.org/wiki/Microglia#

136. Collister,J., Liu, X, Clifton,L. Calculating Polygenic Risk Scores (PRS) in UK Biobank: A Practical Guide for Epidemiologists. 2022. Front. Genet., https://www.frontiersin.org/articles/10.3389/fgene.2022.818574/full#:~:text=A%20polygenic%20risk%20score%20(PRS,genome%2C%20each%20of%20which%20can

137. Guo,L et al. SARS-CoV-2specific antidody and T-Cell responses 1 year after infection in people recovered from COVID-19: a longitudinal cohort study. 2022. https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(22)00036-2/fulltext#seccestitle160

138. Britannica, The Editors of Encyclopaedia. "T cell". Encyclopedia Britannica, 31 Jan. 2020, https://www.britannica.com/science/T-cell.

139. Britannica, The Editors of Encyclopaedia. "B cell". Encyclopedia Britannica, 7 Nov. 2021, https://www.britannica.com/science/B-cell.

140. Carter, D. T Cells, B Cells and the Immune System. University of Texas MD Anderson Cancer Center. https://www.mdanderson.org/cancerwise/t-cells--b-cells-and-the-immune-system.h00-159465579.html

141. Wikipedia. T Cell. https://en.wikipedia.org/wiki/T_cell

142. Ramakrishnan RK, Kashour T,Hamid Q, Halwani R and Tleyjeh IM. (2021) Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front. Immunol. 12:686029. doi: 10.3389/fimmu.2021.686029

143. Siripanthong B, Asatryan B, Hanff T, et al. The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury. J Am Coll Cardiol Basic Trans Science. 2022 Mar, 7 (3_Part_1) 294–308.https://doi.org/10.1016/j.jacbts.2021.10.011

144. Vladimir Petrovic , Dina Radenkovic, Goran Radenkovic, Vukica Djordjevi and Maciej Banach. Pathophysiology of Cardiovascular Complications in COVID-19. 2022. https://www.frontiersin.org/articles/10.3389/fphys.2020.575600/full

145. Indranill Basu-Ray; Nureddin k. Almaddah; Adedayo Adeboye; Michael P. Soos. Cardiac Manifestations Of Coronavirus (COVID-19) (2022) https://www.ncbi.nlm.nih.gov/books/NBK556152/

146. Elicker,B. What are the Long-term Pulmonary Sequelae of COVID-19 Infection? 2022.RSNA Radiology. https://pubs.rsna.org/doi/10.1148/radiol.220449#r6

147. Stefanou M-I, Palaiodimou L, Bakola E, et al. Neurological manifestations of long-COVID syndrome: a narrative review. Therapeutic Advances in Chronic Disease. January 2022. doi:10.1177/20406223221076890

148. Henderson,E, review of. Moderate to severe sleep disturbances found to be prevalent among patients with long COVID. 2022. https://www.news-medical.net/news/20220606/Moderate-to-severe-sleep-disturbances-found-to-be-prevalent-among-patients-with-long-COVID.aspx

149. Beyond Blue. Long COVID: looking after your mental health. https://coronavirus.beyondblue.org.au/COVID-normal/supporting-personal-wellbeing/long-covid-looking-after-your-mental-health

150. Cabarkapa,S., King, J., Ng,C. The Psychaitric Impact of COVID-19 on Healthcare Workers. AJGP 2020. https://www1.racgp.org.au/ajgp/2020/december/the-psychiatric-impact-of-covid-19-on-healthcare-w#:~:text=Studies%20have%20reported%20a%20range,obsessive%2Dcompulsive%20symptoms%20and%20somatisation.

151. Efstathiou, V. et al. Long COVID and neuropsychiatric manifestations. 2022. Experimental and Therapeutic Medicine. doi: 10.3892/etm.2022.11290

152. Tarquet,M et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1284437 patients. 2022. DOI: https://doi.org/10.1016/S2215-0366(22)00260-7

153. Mason,H. Incidence and clinical features of long COVID in children. 2022. Univadis Medical News. https://www.univadis.com/viewarticle/incidence-and-clinical-features-of-long-covid-in-children-8ee3869b-b537-30d2-a9a6-8079f22c25c7?sso=true&utm_content=4998644&utm_medium=email&utm_term=&uac=5015PY&ecd=mkm_ret_220830_uniday_MUDGLOBAL_4998644&utm_source=&utm_campaign=medical%20update%20daily

154. Rao S, Lee GM, Razzaghi H, Lorman V, Mejias A, Pajor NM, et al. Clinical Features and Burden of Postacute Sequelae of SARS-CoV-2 Infection in Children and Adolescents. JAMA Pediatr. 2022 Aug 22. doi: 10.1001/jamapediatrics.2022.2800. Epub ahead of print. PMID: 35994282

155. O’Shea,D. https://www.univadis.com/viewarticle/covid-19-in-pregnancy-linked-to-increased-risk-of-neurodevelopmental-disorders-in-infants-1434c1ac-fac0-3d22-90d3-8015a1629ce0?sso=true&utm_content=4951141&utm_medium=email&utm_term=&uac=5015PY&ecd=mkm_ret_220622_uniday_MUDGLOBAL_4951141&utm_source=&utm_campaign=medical%20update%20daily

156. Edlow AG, Castro VM, Shook LL, Kaimal AJ, Perlis RH. Neurodevelopmental Outcomes at 1 Year in Infants of Mothers Who Tested Positive for SARS-CoV-2 During Pregnancy. JAMA Netw Open. 2022 Jun 1;5(6):e2215787. doi: 10.1001/jamanetworkopen.2022.15787. PMID: 35679048; PMCID: PMC9185175.

157. Guy-Evans, O. (2021, Sept 27). Hypothalamic-Pituitary-Adrenal Axis. Simply Psychology. www.simplypsychology.org/hypothalamic–pituitary–adrenal-axis.html

158. Wikipedia. Hypothalamic-pituitary-adrenal axis. https://en.wikipedia.org/wiki/Hypothalamic%E2%80%93pituitary%E2%80%93adrenal_axis

159. Kaltoft,M et al. Lipoprotein(a) during COVID-19 hospitalization: Thrombosis,inflammation, and mortality. 2022. Athersclerosis https://doi.org/10.1016/j.atherosclerosis.2022.07.015

160. Heching M, Lev S, Shitenberg D, Dicker D, Kramer MR. Surfactant for the Treatment of ARDS in a Patient With COVID-19. Chest. 2021 Jul;160(1):e9-e12. doi: 10.1016/j.chest.2021.01.028. Epub 2021 Jan 22. PMID: 33493441; PMCID: PMC7825915.

161. Piva, S., DiBlasi, R.M., Slee, A.E. et al. Surfactant therapy for COVID-19 related ARDS: a retrospective case–control pilot study. Respir Res 22, 20 (2021). https://doi.org/10.1186/s12931-020-01603-w

162. Schousbe,P et al: Reduced levels of pulmonary surfactant in COVID-19 ARDS. 2022. Nature Scientific Reports. https://doi.org/10.1038/s41598-022-07944-4

163. Gong,X., Yuan,Y. Incidence and prognostic value of pulmonary embolism in COVID-19: A systematic review and meta-analysis. 2022 PLOS One. https://doi.org/10.1371/journal.pone.0263580

164. Wells,R, Malik,V.,Lau,D. et al, : Cerebral Blood Flow and Cognitive Performance in Postural Tachycardia Syndrome: Insights from Sustained Cognitive Stress Test. Journal of the American Heart Association, 2020

165. Liao SC, Shao SC, Chen YT, Chen YC, Hung MJ. Incidence and mortality of pulmonary embolism in COVID-19: a systematic review and meta-analysis. Critical care (London, England). 2020;24(1):464. pmid:32718343

166. Sakr, Y., Giovini, M., Leone, M. et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: a narrative review. Ann. Intensive Care 10, 124 (2020). https://doi.org/10.1186/s13613-020-00741-0

167. Tholin, B et al. Incidence of thrombotic complications in hospitalised and non-hospitalised patients after COVID-19 diagnosis. August 2022. British Journal of Haematology. https://doi.org/10.1111/bjh.17522

168. Oudkerk M, Buller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud TC, et al. Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19: report of the National Institute for Public Health of the Netherlands. Radiology. 2020. https://doi.org/10.1148/radiol.2020201629.

169. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18:1421–4.

170. Bandara, Sahan, respirology.com.au

171. Calabrese LH, Calabrese C. Baricitinib and dexamethasone for hospitalized patients with COVID-19. Cleve Clin J Med. 2021 Feb 1. doi: 10.3949/ccjm.88a.ccc073. Epub ahead of print. PMID: 33526440.

172. Wang Z, Yang Y, Liang X, Gao B, Liu M, Li W, Chen Z, Wang Z. COVID-19 associated ischemic stroke and hemorrhagic stroke: Incidence, potential pathological mechanism, and management. Front Neurol. 2020;11(571996) doi: 10.3389/fneur.2020.571996.

173. Rojas,M et al.: Autoimmunity is a hallmark of Post-COVID syndrome. Journal of Translational Medicine. 2022. https://doi.org/10.1186/s12967-022-03328-4

174. Holcomb, Zachary, COVID19 infection linked to risk of cutaneous autoimmune and vascular diseases, 2022. https://www.univadis.com/viewarticle/covid-19-infection-linked-to-risk-of-cutaneous-autoimmune-and-vascular-diseases-7d78c8cf-25b1-4ee6-a66f-0f29c541ffd3t

175. Usman, N., Annamaraju,P. Type 111 Hypersensitivity Reaction.2022. In: StatPearls [Internet]. Treasure Island (FL): StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK559122/#_NBK559122_pubdet_

176. Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 259–264 (2021).

177. Ding,Y.,Yan,H., Guo,W. Clinical Characteristics of children withCOVID-19: a meta-analysis. Front Ped. 2020, https://doi.org/10.3389/fped.2020.00431

178. Backryd,E et al. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. 2017, Journal of Pain Research. https://www.dovepress.com/evidence-of-both-systemic-inflammation-and-neuroinflammation-in-fibrom-peer-reviewed-fulltext-article-JPR

179. Leonard-Lorant I, Delabranche X, Severac F, Helms J, Pauzet C, Collange O, et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology. 2020;296:E189–91.

180. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18:1023–6.

181. Marshall-Gradisnik,Sonya, Eaton-Fitch,Natalie. Understanding myalgic encephalitis. 2022. Science. DOI: 10.1126/science.abo1261. https://www.science.org/doi/10.1126/science.abo1261

182. RACGP. Caring for patients with post-COVID-19 conditions. 2021. https://www.racgp.org.au/clinical-resources/covid-19-resources/clinical-care/caring-for-patients-with-post-covid-19-conditions/introduction

183. Backryd,E et al. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. 2017, Journal of Pain Research. https://www.dovepress.com/evidence-of-both-systemic-inflammation-and-neuroinflammation-in-fibrom-peer-reviewed-fulltext-article-JPR

184. Wells,R, Malik,V.,Lau,D. et al, : Cerebral Blood Flow and Cognitive Performance in Postural Tachycardia Syndrome: Insights from Sustained Cognitive Stress Test. Journal of the American Heart Association, 2020

185. Sashindranath, M., Nandurkar H. Endothelial Dysfunction in the Brain. AHA Journals. Stroke 2021. https://www.ahajournals.org/doi/10.1161/STROKEAHA.120.032711

186. https://en.wikipedia.org/wiki/Gq_alpha_subunit

187. https://en.wikipedia.org/wiki/Natural_killer_cell

188. https://en.wikipedia.org/wiki/Recombinant_DNA

189. Blitshteyn S. Autoimmune markersand autoimmune disordersin patients with postural tachycardia syndrome (POTS). Lupus. 2015;24:1364–9. https://doi.org/10.1177/0961203315587566.

190. Kubo,Y et al. Postural Change-associated Alterations in QT/QTC Intervals in Electrocardiograms. 2005. J Arrhythmia.

191. Midena,E et al. Small Fibre Peripheral Alterations Following COVID-19 Detected by Corneal Confocal Microscopy. J Pers Med. 2022. doi: 10.3390/jpm12040563

192. Abrams,R et al. Small Fiber Neuropathy associated with SARS-CoV-2 Infection. Muscle Nerve. 2022. doi: 10.1002/mus.27458

193. Douedi,S, Douedi,H. P Wave. 2022 StatPearle Publishing. https://www.ncbi.nlm.nih.gov/books/NBK551635/#_NBK551635_pubdet_

194. Weller,C. Mast Cells. British Society for Immunology. https://www.immunology.org/public-information/bitesized-immunology/cells/mast-cells

195. Nieto, C. Low-Calorie Ketogenic Diet Improves Immune Function. 2022. Medscape Medical News. https://www.medscape.com/viewarticle/973967

196. Ferreira,V., et al., Cytokines and Interferons: Types and Functions. 2017. https://www.intechopen.com/books/autoantibodies-and-cytokines/cytokines-and-interferons-types-and-functions

197. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Mol Neurobiol. 2017 Mar;54(2):997-1007. doi: 10.1007/s12035-016-9720-x. Epub 2016 Jan 21. PMID: 26797518

198. Midena,E et al. Small Fibre Peripheral Alterations Following COVID-19 Detected by Corneal Confocal Microscopy. J Pers Med. 2022. doi: 10.3390/jpm12040563

199. Abrams,R et al. Small Fiber Neuropathy associated with SARS-CoV-2 Infection. Muscle Nerve. 2022. doi: 10.1002/mus.27458

200. Cesta,M et al. The Role of Interleukin-8 in Lung Management and Injury: Implications for the Management of COVID-19 and Hyperinflammatory Acute Respiratory Distress Syndrome. 2022. Front. Pharmacol. https://www.frontiersin.org/articles/10.3389/fphar.2021.808797/full

201. Queiroz,M et al. Cytokine Profiles Associated with Acute COVID-19 and Long COVID-19 Syndrome. 2022. Front Cell Infect Microbiol. 2022; 12: 922422. doi: 10.3389/fcimb.2022.922422

202. Li,L et al. Interleukin-8 as a Biomarker for Disease Prognosis of Coronavirus Disease-2019 Patients. 2020 Front Immunol. 11: 602395 doi: 10.3389/fimmu.2020.602395

203. Ma, A et al. High Levels of Circulating IL-8 and Soluble IL-2R are Associated with Polonged Illness in Patients With Severe COVID-19. 2021. Front. Immunol. https://www.frontiersin.org/articles/10.3389/fimmu.2021.626235/full

204. Hu T. Editorial: Cytokine Release Syndrome in COVID-19: Mechanisms and Management. 2022. Front. Pharmacol. 13:965714.

205. Wikimedia Commons contributors. PAMPS and PRRs in the Innate Immune System. 2022. Wikimedia Commons. https://commons.wikimedia.org/w/index.php?title=File:PAMPs_and_PRRs_in_the_Innate_Immune_System.png&oldid=673042382

206. Immcarle105, CC BY-SA 4.0. https://creativecommons.org/licenses/by-sa/4. via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Activation_of_T_and_B_cells.png

207. General Effector Mechanisms of B and T cells. 2021 via Wikipedia. Commons.https://commons.wikimedia.org/wiki/File:General_Effector_Mechanisms_of_B_and_T_Cells.png

208. Angiotensin Converting Enzyme. 2022. Australasian Association for Clinical Biochemistry and laboratory Medicine. https://pathologytestsexplained.org.au/learning/test-index/ace

209. Reindl-Schwaighofer, R et al.ACE2 Elevation in Severe COVID-19. 2021. American Journal of Respiratory and Critical Care Medicine. https://doi.org/10.1164/rccm.202101-0142LE

210. Wikipedia Contributors. Glymphatic System. 2022. Wikipedia, the Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Glymphatic_system&oldid=1096466284

211. Xie, L et al. Sleep Drives Metabolite Clearance from the Adult Brain. 2013. Science. https://doi.org/10.1126%2Fscience.1241224

212. Travis J. Miller, Jarom N. Gilstrap, Katsuhide Maeda, Stanley Rockson, Dung H. Nguyen, Correction of complete thoracic duct obstruction with lymphovenous bypass: A case report, Microsurgery, 10.1002/micr.30339, 39, 3, (255-258), (2018).

213. Natale,G et al. Glymphatic System as a Gateway to Connect Neurodegeneration from Periphery to CNS. 2021. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front. Neurosci. 15:639140. doi: 10.3389/fnins.2021.639140

214. Renz-Polster,H., et al: The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front. Cell. Neurosci., 09 May 2022 https://doi.org/10.3389/fncel.2022.888232

215. Narra, C. Thoracic Outlet Syndrome. https://www.slideshare.net/swatcats2013/thoracic-outlet-syndrome-62735055

216. Larsen,K., Galluccio, F., Chand, K. Does Thoracic outlet syndrome cause cerebrovascular hyperperfusion? Diagnostic markers for occult craniovascular congestion. 2020. Anaesthesia, Pain and Intensive Care 24(1):69-86. https://www.researchgate.net/publication/341234629_Does_thoracic_outlet_syndrome_cause_cerebrovascular_hyperperfusion_Diagnostic_markers_for_occult_craniovascular_congestion

217. Kosugi,K et al Posture-Induced Changes in the Vessels of the Head and Neck: Evaluation using conventional Supine CT and Upright CT. Nature (Scientific reports) 2020. https://doi.org/10.1038/s41598-020-73658-0

218. Jayaraman,M. Cerebral Venous Thrombosis. https://www.academia.edu/171434/Cerebral_Venous_Sinus_Thrombosis

219. Frydrychowski AF, Winklewski PJ, Guminski W. Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One. 2012;7(10):e48245. doi: 10.1371/journal.pone.0048245. Epub 2012 Oct 24. PMID: 23110218; PMCID: PMC3480498.

220. Wikipedia: Head and Neck Veins. https://commons.wikimedia.org/wiki/File:2133_Head_and_Neck_Veins.jpg

221. Katz EA, Katz SB, Fedorchuk CA, Lightstone DF, Banach CJ, Podoll JD. Increase in cerebral blood flow indicated by increased cerebral arterial area and pixel intensity on brain magnetic resonance angiogram following correction of cervical lordosis. Brain Circ 2019;5:19-26.

222. Bulut,M et al. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis. 2016. Med Sci Monit; 22:495-500 https://medscimonit.com/abstract/index/idArt/897500

223. Watson,D., https://watsonheadache.com/

224. Ogoh,S., Tarumi, T. Cerebral blood flow regulation and cognitive function: a role of arterial baroreflex function. 2019. The Journal of Physiological Sciences. https://doi.org/10.1007/s12576-019-00704-6

225. Narayan Yoganandan, PhD, Jamie L Baisden, MD, Jobin John, PhD, Gurunathan Saravana Kumar, PhD, Anjishnu Banerjee, PhD, Hoon Choi, MD, PhD, Vertebral Level-dependent Kinematics of Female and Male Necks Under G+x Loading, Military Medicine, Volume 186, Issue Supplement_1, January-February 2021, Pages 619–624, https://doi.org/10.1093/milmed/usaa312

226. Jung SI, Lee NK, Kang KW, Kim K, Lee DY. The effect of smartphone usage time on posture and respiratory function. J Phys Ther Sci. 2016;28(1):186-189. doi:10.1589/jpts.28.186

227. Ioachim, G et al. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front. Neurol., 06 May 2022. https://doi.org/10.3389/fneur.2022.862976

228. Benarroch, E.: The locus ceruleus norepinephrine system Functional organization and potential clinical significance. Neurology Nov 2009, 73 (20) 1699-1704; DOI: 10.1212/WNL.0b013e3181c2937c

229. Yong SJ. Persistent Brainstem Dysfunction in Long-COVID: A Hypothesis. ACS Chem Neurosci. 2021 Feb 17;12(4):573-580. doi: 10.1021/acschemneuro.0c00793. Epub 2021 Feb 4. PMID: 33538586; PMCID: PMC7874499.

230. Peripheral Sensitization: https://www.physio-pedia.com/Peripheral_sensitization

231. Phillips,C. https://www.clinicalpilates.com/

232. Bankenahally, R., Krovvidi, H. Autonomic Nervous System: Anatomy, Physiology, and Relevance in Anaesthesia and Critical Care Medicine. BJA Education. 2016;16(11):381-387.

233. Larsen,K. Jugular outlet syndrome (JOS), a common sequela of chronic upper cervical dysfunction. 2021. https://www.researchgate.net/publication/337465853_Jugular_outlet_syndrome_JOS_a_common_sequela_of_chronic_upper_cervical_dysfunction

234. Waldhauer, I., Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008). https://doi.org/10.1038/onc.2008.267

235. Kim, Y., Shin, E. Type I and III Interferon Responses in SARS-CoV-2 Infection. 2021. Experimental & Molecular Medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099704/

236. Lee,J., Shin,E. The Type I Interferon Response in COVID-19: Implications for Treatment. 2020. Nature Reviews. Immunology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824445/

237. Schau, I., Michen, S., Hagstotz, A. et al. Targeted delivery of TLR3 agonist to tumor cells with single chain antibody fragment-conjugated nanoparticles induces type I-interferon response and apoptosis. Sci Rep 9, 3299 (2019). https://doi.org/10.1038/s41598-019-40032-8

238. Weiss, B. Study Shows NMN Enhances Activation of Cancer-Fighting Immune Cells https://www.nmn.com/news/study-shows-nmn-enhances-cancer-preventing-immune-cell-activation

239. Hong, W. et al. NMN ameliorates a number of age-related diseases by increasing NAD+ levels. 2021. Frontiers in Cell and Developmental Biology

240. https://www.nmn.com/

241. Shade, C. The Science Behind NMN–A Stable, Reliable NAD+Activator and Anti-Aging Molecule. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238909/

242. Chatterjee, S. et al. CD38-NAD + Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metab. 2018 Jan 9;27(1):85-100.e8. doi: 10.1016/j.cmet.2017.10.006. Epub 2017 Nov 9.

243. Paul, S., Lai, G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front. Immunol., 13 September 2017 https://doi.org/10.3389/fimmu.2017.01124

244. Long AN, Owens K, Schlappal AE, Kristian T, Fishman PS, Schuh RA. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer's disease-relevant murine model. BMC Neurol. 2015;15:19. Published 2015 Mar 1. doi:10.1186/s12883-015-0272-x

245. Manik,M., Singh,R. Role of toll-like receptors in modulation of cytokine storm signalling in SARS_CoV-2-induced COVID-19. (2021) Journal of Medical Virology. DOI: 10.1002/jmv.27405

246. Mabrey, F., Morrell, E and Wurfel, M. TLRs in COVID-19: How they drive immunopathology and the rationale for modulation. 2021. Innate Immunity. Sagepub. https://doi.org/10.1177/17534259211051364

247. Albornoz, E.A., Amarilla, A.A., Modhiran, N. et al. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry (2022). https://doi.org/10.1038/s41380-022-01831-0

248. Nalbandian, A., Sehgal, K., Gupta, A. et al. Post-acute COVID-19 syndrome. Nat Med 601–615 (2021). https://doi.org/10.1038/s41591-021-01283-z

249. Rauch, L et al. Binding of phosphatidylserine-positive microparticles by PBMCs classifies disease severity in COVID-19 patients. 2021 bioRxiv. doi: https://doi.org/10.1101/2021.06.18.448935

250. Dewulf, J.P., Martin, M., Marie, S. et al. Urine metabolomics links dysregulation of the tryptophan-kynurenine pathway to inflammation and severity of COVID-19. Sci Rep 12, 9959 (2022). https://doi.org/10.1038/s41598-022-14292-w

251. Bai, J, Zheng, Y and Yu, Y. Urinary kynurenine as a biomarker for Parkinson’s disease. 2020 Neurological Sciences. DOI: 10.1007/s10072-020-04589-x

252. Velazquez R, Ferreira E, Knowles S, Fux C, Rodin A, Winslow W, Oddo S. Lifelong choline supplementation ameliorates Alzheimer's disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell. 2019 Dec;18(6):e13037. doi: 10.1111/acel.13037. Epub 2019 Sep 27. PMID: 31560162; PMCID: PMC6826123.

253. Dwivedi,R. Researchers study COVID-19 immune dysfunction in relation to phosphatidylserine. https://www.news-medical.net/news/20210623/Researchers-study-COVID-19-immune-dysfunction-in-relation-to-phosphatidylserine.aspx

254. Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition. 2015 Jun;31(6):781-6. doi: 10.1016/j.nut.2014.10.014. Epub 2014 Nov 4. PMID: 25933483.

255. Song J, da Costa KA, Fischer LM, et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005;19(10):1266-1271. doi:10.1096/fj.04-3580com

256. Pizzorusso T, Tognini P. Interplay between Metabolism, Nutrition and Epigenetics in Shaping Brain DNA Methylation, Neural Function and Behavior. Genes (Basel). 2020 Jul 3;11(7):742. doi: 10.3390/genes11070742. PMID: 32635190; PMCID: PMC7397264.

257. Methylation. Wikipedia. https://en.wikipedia.org/wiki/Methylation

258. Moore, L, Le, T, Fan, nG. DNA Methylation and its basic Function. Neuropsychopharmacology. 2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521964/

259. S-Adenosyl-L-Methionine (SAMe): In Depth. National Center for Complementary and Integrative Health. 2017. https://www.nccih.nih.gov/health/sadenosyllmethionine-same-in-depth

260. S-Adenosyl methionine. Wikipedia. https://en.wikipedia.org/wiki/S-Adenosyl_methionine

261. Grazie C, Di Padova C, Salerno MT, Carrieri V, Albano O. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand J Gastroenterol. 1989 May;24(4):407-15. doi: 10.3109/00365528909093067. PMID: 2781235.

262. Huang,Y., Ling,Q., Manyande,A., Wu,D, Xiang,B. Brain Imaging Changes in Patients Recovered From COVID-19: A Narrative Review. 2022. Front. Neurosci. https://www.frontiersin.org/articles/10.3389/fnins.2022.855868/full

263. MYD88. Wikipedia. https://en.wikipedia.org/wiki/MYD88

264. Toll-like receptor. Wikipedia. https://en.wikipedia.org/wiki/Toll-like_receptor

265. NF-kB. Wikipedia. https://en.wikipedia.org/wiki/NF-%CE%BAB

266. Mitogen-activated protein kinase. Wikipedia. https://en.wikipedia.org/wiki/Mitogen-activated_protein_kinase

267. Toll-like receptor 7. Wikipedia. https://en.wikipedia.org/wiki/Toll-like_receptor_7

268. Toll-like receptor 9. Wikipedia. https://en.wikipedia.org/wiki/Toll-like_receptor_9

269. Yang H, George SJ, Thompson D, Silverman HA, Tsaava T, Tynan A, Pavlov VA, Chang E, Andersson U, Brines M, Chavan SS, Tracey KJ. Famotidine activates the vagus nerve inflammatory reflex to attenuate cytokine storm. 2022 Mol Med. doi: 10.21203/rs.3.rs-1493296/v1.

270. Al-Kuraishy HM, Al-Gareeb AI, Qusti S, Alshammari EM, Gyebi GA, Batiha GE. Covid-19-Induced Dysautonomia: A Menace of Sympathetic Storm. ASN Neuro. 2021 Jan-Dec;13:17590914211057635. doi: 10.1177/17590914211057635.

271. Hira, R et al. Objective Hemodynamic Cardiovascular Autonomic Abnormalities in Post-Acute Sequelae of COVID-19. 2022. Canadian Journal of Cardiology. DOI: https://doi.org/10.1016/j.cjca.2022.12.002

272. Brennan CM, et al. Oral famotidine versus placebo in non-hospitalised patients with COVID-19: a randomised, double-blind, data-intense, phase 2 clinical trial. Gut. 2022 May;71(5):879-888. doi: 10.1136/gutjnl-2022-326952.

273. Weber JM, Boules M, Fong K, Abraham B, Bena J, El-Hayek K, Kroh M, Park WM. Median Arcuate Ligament Syndrome Is Not a Vascular Disease. Ann Vasc Surg. 2016 Jan;30:22-7. doi: 10.1016/j.avsg.2015.07.013. Epub 2015 Sep 10. PMID: 26365109.

274. Papatheodorou L, Weiss N. Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal. 2007 Nov;9(11):1941-58. doi: 10.1089/ars.2007.1750. PMID: 17822365

275. Chen, S., Dong, Z., Zhao, Y. et al. Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat ischemic brain. Sci Rep 7, 6932 (2017). https://doi.org/10.1038/s41598-017-07112-z

276. Li T, Jing J, Sun L, et al. TLR4 and MMP2 polymorphisms and their associations with cardiovascular risk factors in susceptibility to aortic aneurysmal diseases. Biosci Rep. 2019;39(1):BSR20181591. Published 2019 Jan 8. doi:10.1042/BSR20181591

277. Zhong, Q., Zou, Y., Liu, H. et al. Toll-like receptor 4 deficiency ameliorates β2-microglobulin induced age-related cognition decline due to neuroinflammation in mice. Mol Brain 13, 20 (2020). https://doi.org/10.1186/s13041-020-0559-8

278. Wang, X., Zhang, Y., Peng, Y., Hutchinson, M. R., Rice, K. C., Yin, H., & Watkins, L. R. (2016). Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. British journal of pharmacology, 173(5), 856-869

279. Cabanas H, Muraki K, Eaton-Fitch N, Staines DR, Marshall-Gradisnik S. Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment. Front

Immunol. 2021 Jul 13;12:687806. doi: 10.3389/fimmu.2021.687806. PMID: 34326841; PMCID: PMC8313851.

280. Oberg F, Haseeb A, Ahnfelt M, Pontén F, Westermark B, El-Obeid A. Herbal melanin activates TLR4/NF-kappaB signaling pathway. Phytomedicine. 2009 May;16(5):477-84. doi: 10.1016/j.phymed.2008.10.008. Epub 2008 Dec 21. PMID: 19103478.

281. Arjumand,S, Shahzad,M. Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α, IL-1, and NFκB expression levels. 2019. Biomedicine & Pharmacotherapy. https://doi.org/10.1016/j.biopha.2019.01.006

282. Osama A Badary, Marwa S Hamza, and Rajiv Tikamdas. Thymoquinone: A Promising Natural Compound with Potential Benefits for COVID-19 Prevention and Cure. Drug Des Devel Ther 2021. doi: 10.2147/DDDT.S308863

283. Ardah MT, Merghani MM, Haque ME. Thymoquinone prevents neurodegeneration against MPTP in vivo and modulates α-synuclein aggregation in vitro. Neurochem Int. 2019 Sep;128:115-126. doi: 10.1016/j.neuint.2019.04.014. Epub 2019 Apr 24. PMID: 31028778.

284. Birsen Elibol, Merve Beker, Sule Terzioglu-Usak, Tugce Dalli, Ulkan Kilic, Thymoquinone administration ameliorates Alzheimer's disease-like phenotype by promoting cell survival in the hippocampus of amyloid beta1–42 infused rat model, Phytomedicine, 2020. https://doi.org/10.1016/j.phymed.2020.153324.

285. Poorgholam P, Yaghmaei P, Hajebrahimi Z. Thymoquinone recovers learning function in a rat model of Alzheimer's disease. Avicenna J Phytomed. 2018;8(3):188-197.

286. Abulfadl Y, El-Maraghy N, Ahmed AE, Nofal S, Abdel-Mottaleb Y, Badary O. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Human & Experimental Toxicology. 2018;37(10):1092-1104. doi:10.1177/0960327118755256

287. Vlahopoulos, S., Adamaki, M., Khoury, N., Zoumpourlis, V., & Boldogh, I. (2018). Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacology & Therapeutics, 183, 34-46

288. Schug, T. T., Xu, Q., Gao, H., Peres-da-Silva, A., Draper, D. W., Fessler, M. B., ... & Li, X. (2010). Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Molecular and cellular biology, 30(19), 4712-4721

289. Obuchowicz, E., Bielecka-Wajdman, A. M., Paul-Samojedny, M., & Nowacka, M. (2014). Antidepressant drugs inhibit the production of IL-6 and IL-8 but not the production of IL-1β and TNF-α by astrocytes exposed to lipopolysaccharide. Pharmacological Reports, 66(4), 613-623

290. Zhang, J., Yang, L., Lin, N., Pan, X., Zhu, Y., & Chen, X. (2016). Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy. Experimental and Therapeutic Medicine, 12(4), 2281-2288

291. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J. Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol. 2011 Mar;232(1-2):196-9. doi: 10.1016/j.jneuroim.2010.10.025. Epub 2010 Nov 20. PMID: 21095018; PMCID: PMC3053074.

292. Han YM, Cheung WK, Wong CK, Sze SL, Cheng TW, Yeung MK, Chan AS. Distinct Cytokine and Chemokine Profiles in Autism Spectrum Disorders. Front Immunol. 2017 Jan 23;8:11. doi: 10.3389/fimmu.2017.00011. PMID: 28167942; PMCID: PMC5253384.

293. Pham MH, Bonello GB, Castiblanco J, Le T, Sigala J, He W, Mummidi S. The rs1024611 regulatory region polymorphism is associated with CCL2 allelic expression imbalance. PLoS One. 2012;7(11):e49498. doi: 10.1371/journal.pone.0049498. Epub 2012 Nov 16. PMID: 23166687; PMCID: PMC3500309

294. Obuchowicz, E., Bielecka-Wajdman, A. M., Paul-Samojedny, M., & Nowacka, M. (2014). Antidepressant drugs inhibit the production of IL-6 and IL-8 but not the production of IL-1β and TNF-α by astrocytes exposed to lipopolysaccharide. Pharmacological Reports, 66(4), 613-623

295. Zhang, J., Yang, L., Lin, N., Pan, X., Zhu, Y., & Chen, X. (2016). Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the mdx mouse model of Duchenne muscular dystrophy. Experimental and Therapeutic Medicine, 12(4), 2281-2288

296. Wang, X., Zhang, Y., Peng, Y., Hutchinson, M. R., Rice, K. C., Yin, H., & Watkins, L. R. (2016). Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. British journal of pharmacology, 173(5), 856-869

297. Cree BA, Kornyeyeva E, Goodin DS. Pilot trial of low-dose naltrexone and quality of life in multiple sclerosis. Ann Neurol. 2010 Aug;68(2):145-50. doi: 10.1002/ana.22006. PMID: 20695007.

298. Vlahopoulos, S., Adamaki, M., Khoury, N., Zoumpourlis, V., & Boldogh, I. (2018). Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacology & Therapeutics, 183, 34-46

299. Schug, T. T., Xu, Q., Gao, H., Peres-da-Silva, A., Draper, D. W., Fessler, M. B., ... & Li, X. (2010). Myeloid deletion of SIRT1 induces inflammatory signaling in response to environmental stress. Molecular and cellular biology, 30(19), 4712-4721

300. Bramante CT, Buse JB, Liebovitz DM, et al. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVIDOUT): a multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect Dis 2023; published online June 8. https://doi.org/10.1016/ S1473-3099(23)00299-2.

301. Herzig, S., Shaw, R. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19, 121–135 (2018). https://doi.org/10.1038/nrm.2017.95

302. Jeon, SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48, e245 (2016). https://doi.org/10.1038/emm.2016.81








15 views0 comments

Recent Posts

See All

December 2023 Dr Graham Exelby The emergent theories of astrocyte/glutamate dysfunction in POTS, can sometimes be seen reasonable easily, given the clear association of this in autism spectrum, fibrom

August 2023 Dr Valerio Vittone Dr Graham Exelby Genetics is the study of heritable changes in gene activity or function due to the direct alteration of the DNA sequence. Epigenetics is the study of h

bottom of page