top of page
  • Writer's pictureGraham Exelby

References for Assembling the Pieces in POTS

References:


  1. van Campen, C.; Rowe, P.C.; Visser, F.C. Orthostatic Symptoms and Reductions in Cerebral Blood Flow in Long-Haul COVID-19 Patients: Similarities with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Medicina 2022, 58, 28. https://doi.org/10.3390/medicina58010028

  2. Raj SR, Fedorowski A, Sheldon RS. Diagnosis and management of postural orthostatic tachycardia syndrome. CMAJ. 2022 Mar 14;194(10):E378-E385. doi: 10.1503/cmaj.211373. PMID: 35288409; PMCID: PMC8920526

  3. Hira, R et al. Objective Hemodynamic Cardiovascular Autonomic Abnormalities in Post-Acute Sequelae of COVID-19. 2022. Canadian Journal of Cardiology. DOI: https://doi.org/10.1016/j.cjca.2022.12.00

  4. Blitshteyn,S. Is postural orthostatic tachycardia syndrome (POTS) a central nervous system disorder? 2021. Journal of Neurology. https://doi.org/10.1007/s00415-021-10502-z

  5. Fontes-Dantas et al., 2023, Cell Reports 42, 112189 March 28, 2023 ª 2023 The Authors. https://doi.org/10.1016/j.celrep.2023.11218

  6. Verger, A., Kas, A., Dudouet, P. et al. Visual interpretation of brain hypometabolism related to neurological long COVID: a French multicentric experience. Eur J Nucl Med Mol Imaging 49, 3197–3202 (2022). https://doi.org/10.1007/s00259-022-05753-5

  7. Hotowitz,T, Pellurin,L, Zimmer, E, Guedj,E. Brain fog in long COVID: A glutamatergic hypothesis with astrocyte dysfunction accounting for brain PET glucose hypometabolism. Elsevier, Medical Hypotheses. https://doi.org/10.1016/j.mehy.2023.111186

  8. Larsen, K. Intracranial Hypertension: Beyond CSF. Diagnosis and Treatment. MSK Neurology. 2020. https://mskneurology.com/intracranial-hypertension-beyond-csf-diagnosis-and-treatment/

  9. Townsend RK, Fargen KM. Intracranial Venous Hypertension and Venous Sinus Stenting in the Modern Management of Idiopathic Intracranial Hypertension. Life (Basel). 2021 May 31;11(6):508. doi: 10.3390/life11060508. PMID: 34073077; PMCID: PMC8227267

  10. Hulens M, Dankaerts W, Rasschaert R, Bruyninckx F, De Mulder P, Bervoets C. The Link Between Empty Sella Syndrome, Fibromyalgia, and Chronic Fatigue Syndrome: The Role of Increased Cerebrospinal Fluid Pressure. J Pain Res. 2023;16:205-219https://doi.org/10.2147/JPR.S394321

  11. Bragée B, Michos A, Drum B, Fahlgren M, Szulkin R, Bertilson BC. Signs of Intracranial Hypertension, Hypermobility, and Craniocervical Obstructions in Patients With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Neurol. 2020 Aug 28;11:828. doi: 10.3389/fneur.2020.00828. PMID: 32982905; PMCID: PMC7485557

  12. Higgins N, Pickard J, Lever A. Lumbar puncture, chronic fatigue syndrome and idiopathic intracranial hypertension: a cross-sectional study. JRSM Short Rep. 2013 Nov 21;4(12):2042533313507920. doi: 10.1177/2042533313507920. PMID: 24475346; PMCID: PMC3899735

  13. Higgins JNP, Pickard JD, Lever AML. Chronic fatigue syndrome and idiopathic intracranial hypertension: Different manifestations of the same disorder of intracranial pressure? Med Hypotheses. 2017 Aug;105:6-9. doi: 10.1016/j.mehy.2017.06.014. Epub 2017 Jun 24

  14. Higgins N, Pickard J, Lever A. Borderline Intracranial Hypertension Manifesting as Chronic Fatigue Syndrome Treated by Venous Sinus Stenting. J Neurol Surg Rep. 2015 Nov;76(2):e244-7. doi: 10.1055/s-0035-1564060. Epub 2015 Sep 14.

  15. Deumer US, Varesi A, Floris V, Savioli G, Mantovani E, López-Carrasco P, Rosati GM, Prasad S, Ricevuti G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J Clin Med. 2021 Oct 19;10(20):4786. doi: 10.3390/jcm10204786. PMID: 34682909; PMCID: PMC8538807.

  16. Costa D., Tannock C., Brostoff J. Brainstem Perfusion Is Impaired in Chronic Fatigue Syndrome. QJM Mon. J. Assoc. Physicians. 1995;88:767–773.

  17. Zamboni P, Galeotti R. The chronic cerebrospinal venous insufficiency syndrome. Phlebology. 2010 Dec;25(6):269-79. doi: 10.1258/phleb.2010.009083. PMID: 21106999.

  18. Sonkaya,S, Öztrk B, Karadaş Ö. Cerebral hemodynamic alterations in patients with Covid-19. Turk J Med Sci. 2021 Apr 30;51(2):435-439. doi: 10.3906/sag-2006-203. PMID: 33021761; PMCID: PMC8203147

  19. Wells,R, Malik,V.,Lau,D. et al, : Cerebral Blood Flow and Cognitive Performance in Postural Tachycardia Syndrome: Insights from Sustained Cognitive Stress Test. Journal of the American Heart Association, 2020

  20. Ioachim, G et al. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front. Neurol., 06 May 2022. https://doi.org/10.3389/fneur.2022.862976

  21. Cejas,C., Cisneros, L.,Lagos,R, Zuk,C, Ameriso,S. Internal Jugular Vein Valve Incompetence Is Highly Prevalent in Transient Global Amnesia. 2010 Stroke. https://doi.org/10.1161/STROKEAHA.109.566315

  22. Kosugi,K et al Posture-Induced Changes in the Vessels of the Head and Neck: Evaluation using conventional Supine CT and Upright CT. Nature (Scientific reports) 2020. https://doi.org/10.1038/s41598-020-73658-0  

  23. Flanagan MF. The Role of the Craniocervical Junction in Craniospinal Hydrodynamics and Neurodegenerative Conditions. Neurol Res Int. 2015;2015:794829. doi: 10.1155/2015/794829. Epub 2015 Nov 30. PMID: 26770824; PMCID: PMC4681798.

  24. Jacob, L., Boisserand, L.S.B., Geraldo, L.H.M. et al. Anatomy and function of the vertebral column lymphatic network in mice. Nat Commun 10, 4594 (2019). https://doi.org/10.1038/s41467-019-12568-w

  25. Albayram, M.S., Smith, G., Tufan, F. et al. Non-invasive MR imaging of human brain lymphatic networks with connections to cervical lymph nodes. Nat Commun 13, 203 (2022). https://doi.org/10.1038/s41467-021-27887-0

  26. Imtiaz,K (Ed). Vagus Nerve. Physio-pedia. https://www.physio-pedia.com/Vagus_Nerve

  27. Ozel Asliyuce Y, Berberoglu U, Ulger O. Is cervical region tightness related to vagal function and stomach symptoms? Med Hypotheses. 2020 Sep;142:109819. doi: 10.1016/j.mehy.2020.109819. Epub 2020 May 6. PMID: 32408072.

  28. Vagus Nerve. Cleveland Clinic. 2022. https://my.clevelandclinic.org/health/body/22279-vagus-nerve

  29. Kenny, B, Bordoni, B. Neuroanatomy, Cranial Nerve 10 (Vagus Nerve). StatPearls. 2022. https://www.ncbi.nlm.nih.gov/books/NBK537171/#:~:text=Central%20lesions%20of%20the%20vagus,)%3B%20and%20transient%20parasympathetic%20effects.

  30. Garland EM, Raj SR. Differential Diagnosis of Vasovagal Syncope: Postural Orthostatic Tachycardia. Vasovagal Syncope. 2014 Aug 6:179–88. doi: 10.1007/978-3-319-09102-0_14. PMCID: PMC7123721

  31. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior Cerebral Hypoperfusion in Migraine Without Aura. Cephalalgia. 2008;28(8):856-862. doi:10.1111/j.1468-2982.2008.01623.x

  32. Frydrychowski AF, Winklewski PJ, Guminski W (2012) Influence of Acute Jugular Vein Compression on the Cerebral Blood Flow Velocity, Pial Artery Pulsation and Width of Subarachnoid Space in Humans. PLoS ONE 7(10): e48245. doi:10.1371/journal.pone.0048245

  33. Ogoh,S., Tarumi, T. Cerebral blood flow regulation and cognitive function: a role of arterial baroreflex function. 2019. The Journal of Physiological Sciences. https://doi.org/10.1007/s12576-019-00704-6

  34. Nicolaides AN, Morovic S, Menegatti E, Viselner G, Zamboni P. Screening for chronic cerebrospinal venous insufficiency (CCSVI) using ultrasound: recommendations for a protocol. Funct Neurol. 2011 Oct-Dec;26(4):229-48. PMID: 22364944; PMCID: PMC3814564.

  35. Ding J, Guan J, Rajah G, Dornbos D III, Li W, Wang Z, Ding Y, Ji X, Meng R. Clinical and neuroimaging correlates among cohorts of cerebral arteriostenosis, venostenosis and arterio-venous stenosis. Aging (Albany NY). 2019 Dec 2;11(23):11073-11083. doi: 10.18632/aging.102511. Epub 2019 Dec 2. PMID: 31790365; PMCID: PMC6932895.

  36. Zhou D, Ding J, Asmaro K, Pan L, Ya J, Yang Q, Fan C, Ding Y, Ji X, Meng R. Clinical Characteristics and Neuroimaging Findings in Internal Jugular Venous Outflow Disturbance. Thromb Haemost. 2019 Feb;119(2):308-318. doi: 10.1055/s-0038-1676815. Epub 2019 Jan 3. PMID: 30605919.

  37. Roberts, M. Gold Coast Sports and Spinal Physio. Personal reflection.

  38. Bashir, S.T., Redden, C.R., Raj, K. et al. Endometriosis leads to central nervous system-wide glial activation in a mouse model of endometriosis. J Neuroinflammation 20, 59 (2023). https://doi.org/10.1186/s12974-023-02713-0

  39. Raj V, Haman KL, Raj SR, Byrne D, Blakely RD, Biaggioni I, Robertson D, Shelton RC. Psychiatric profile and attention deficits in postural tachycardia syndrome. J Neurol Neurosurg Psychiatry. 2009 Mar;80(3):339-44. doi: 10.1136/jnnp.2008.144360. Epub 2008 Oct 31. PMID: 18977825; PMCID: PMC2758320

  40. Goldenberg DL. Could Long COVID Research Lead to Breakthroughs in Fibromyalgia and Chronic Fatigue? Practical Pain Manag. 2022. https://www.practicalpainmanagement.com/issue202204/could-long-covid-research-lead-to-breakthroughs-in-understanding

  41. Wikipedia. Microglia. https://en.wikipedia.org/wiki/Microglia#

  42. Low, J et al. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol. 2021 January 18; 2: . doi:10.17879/freeneuropathology-2021-2993.

  43. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Mol Neurobiol. 2017 Mar;54(2):997-1007. doi: 10.1007/s12035-016-9720-x. Epub 2016 Jan 21. PMID: 26797518 

  44. ANS Balance Assessment. Bioscan Medeia Inc. https://www.bioscan.com/dtr_ans_overview.htm

  45. Waxenbaum,J, Reddy,V, Varacallo, M. Anatomy, Autonomic Nervous System. StatPearls 2023. https://www.ncbi.nlm.nih.gov/books/NBK539845/#:~:text=The%20autonomic%20nervous%20system%20is,sympathetic%2C%20parasympathetic%2C%20and%20enteric

  46. Goadsby PJ. Autonomic nervous system control of the cerebral circulation. Handb Clin Neurol. 2013;117:193-201. doi: 10.1016/B978-0-444-53491-0.00016-X. PMID: 24095126

  47. Bonaz,B., Sinniger,V., Pellisier,,S.: Vagal Tone: Effects on Sensitivity, Motility and Inflammation. Neurogastroenterol Motil. 2016 Apr;28(4):455-62.

  48. Wikipedia. Baroreflex. https://en.wikipedia.org/wiki/Baroreflex

  49. Knapp, S. HPA Axis. Biology Dictionary 2020. https://biologydictionary.net/hpa-axis/

  50. Yang H, George SJ, Thompson D, Silverman HA, Tsaava T, Tynan A, Pavlov VA, Chang E, Andersson U, Brines M, Chavan SS, Tracey KJ. Famotidine activates the vagus nerve inflammatory reflex to attenuate cytokine storm. 2022 Mol Med. doi: 10.21203/rs.3.rs-1493296/v1.

  51. Wikipedia. Enteric Nervous System. https://en.wikipedia.org/wiki/Enteric_nervous_syste

  52. Larsen,N.et al, Preparing for the long-haul: Autonomic complications of COVID-19. 2021. Autonomic Neuroscience: Basic and Clinical 235 (2021) 10284

  53. Shibata M, Tsutsumi K, Iwabuchi Y, et al. [123I]-IMP single-photon emission computed tomography imaging in visual snow syndrome: A case series. Cephalalgia 2020; 40: 1671–1675

  54. Puledda, F et al. Abnormal Glutamatergic and Serotonergic Connectivity in Visual Snow Syndrome and Migraine with Aura. Annals of Neurology. 2023. https://doi.org/10.1002/ana.26745

  55. Owens AP, Mathias CJ, Iodice V. Autonomic Dysfunction in Autism Spectrum Disorder. Front Integr Neurosci. 2021. doi: 10.3389/fnint.2021.787037. PMID: 35035353; PMCID: PMC8756818.

  56. Baroreflex. Wikipedia. https://en.wikipedia.org/wiki/Baroreflex:

  57. Benarroch, E.: The locus coeruleus norepinephrine system Functional organization and potential clinical significance. Neurology Nov 2009, 73 (20) 1699-1704; DOI: 10.1212/WNL.0b013e3181c2937c

  58. O’Connor,E. World’s strongest MRI investigates COVID and myalgic encephalomyelitis/chronic fatigue impacts on the brain. 2023. Griffith News. https://news.griffith.edu.au/2023/03/14/worlds-strongest-mri-investigates-covid-and-myalgic-encephalomyelitis-chronic-fatigue-impacts-on-the-brain

  59. Barnden L, Shan Z, Staines D, Marshall-Gradisnik S, Finegan K, Ireland T, Bhuta S. Intra brainstem connectivity is impaired in chronic fatigue syndrome. Neuroimage Clin. 2019;24:102045. doi: 10.1016/j.nicl.2019.102045. Epub 2019 Oct 19. PMID: 31671321; PMCID: PMC6835065.

  60. Ioachim, G et al. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front. Neurol., 06 May 2022. https://doi.org/10.3389/fneur.2022.862976

  61. Bombardieri AM, Albers GW, Rodriguez S, et al. Percutaneous cervical sympathetic block to treat cerebral vasospasm and delayed cerebral ischemia: a review of the evidence. Journal of NeuroInterventional Surgery  2022. doi: 10.1136/jnis-2022-019838

  62. O’Toole, R. Watson Headache Approach, https://melbourneheadachecentre.com.au/watson-headache-approach/

  63. Oya M, Matsuoka K, Kubota M, Fujino J, Tei S, Takahata K, Tagai K, Yamamoto Y, Shimada H, Seki C, Itahashi T, Aoki YY, Ohta H, Hashimoto RI, Sugihara G, Obata T, Zhang MR, Suhara T, Nakamura M, Kato N, Takado Y, Takahashi H, Higuchi M. Increased glutamate and glutamine levels and their relationship to astrocytes and dopaminergic transmissions in the brains of adults with autism. Sci Rep. 2023 Jul 19;13(1):11655. doi: 10.1038/s41598-023-38306-3. PMID: 37468523; PMCID: PMC10356952.

  64. Gzielo,K, Nikiforuk,A. Astroglia in Autism Spectrum Disorder. International Journal of Molecular Sciences. 2021. https://doi.org/10.3390/ijms222111544

  65. Allen, M., Huang, B.S., Notaras, M.J. et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Mol Psychiatry 27, 2470–2484 (2022). https://doi.org/10.1038/s41380-022-01486-x

  66. Du Preez S, Eaton-Fitch N, Smith PK, Marshall-Gradisnik S. Altered TRPM7-Dependent Calcium Influx in Natural Killer Cells of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients. Biomolecules. 2023 Jun 26;13(7):1039. doi: 10.3390/biom13071039. PMID: 37509075; PMCID: PMC10377690.

  67. Cabanas,H, Muraki, K,Eaton-Fitch,N, Staines,D, Marshall-Gradisnik,S. Potential Therapeutic Benefit of Low Dose Naltrexone in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Role of Transient Receptor Potential Melastatin 3 Ion Channels in Pathophysiology and Treatment. Frontiers in Immunology. 2021. https://www.frontiersin.org/articles/10.3389/fimmu.2021.687806/full

  68. Watson,D., https://watsonheadache.com/

  69. Benarroch EE. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc. 2012 Dec;87(12):1214-25. doi: 10.1016/j.mayocp.2012.08.013. Epub 2012 Nov 1. PMID: 23122672; PMCID: PMC3547546

  70. Aaron J. Schain,Agustin Melo-Carrillo, Andrew M. Strassman,Rami Burstein Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache. J Neurosci. 2017 Mar 15; 37(11): 2904–2915. doi: 10.1523/JNEUROSCI.3390-16.2017

  71. María Toriello, PhD, Vicente González-Quintanilla, PhD, Sara Pérez-Pereda, MD, Noelia Fontanillas, PhD, Julio Pascual, PhD, The Potential Role of the Glymphatic System in Headache Disorders, Pain Medicine, Volume 22, Issue 12, December 2021, Pages 3098–3100, https://doi.org/10.1093/pm/pnab137

  72. Xie, L et al. Sleep Drives Metabolite Clearance from the Adult Brain. 2013. Science. https://doi.org/10.1126%2Fscience.124122

  73. Mogensen, F.L.-H.; Delle, C.; Nedergaard, M. The Glymphatic System (En)during Inflammation. Int. J. Mol. Sci. 2021, 22, 7491. https://doi.org/10.3390/ijms22147491

  74. Zhang D, Li X, Li B. Glymphatic System Dysfunction in Central Nervous System Diseases and Mood Disorders. Front Aging Neurosci. 2022 Apr 25;14:873697. doi: 10.3389/fnagi.2022.873697. PMID: 35547631; PMCID: PMC9082304.

  75. Natale,G et al. Glymphatic System as a Gateway to Connect Neurodegeneration from Periphery to CNS. 2021. Glymphatic System as a Gateway to Connect Neurodegeneration From Periphery to CNS. Front. Neurosci. 15:639140. doi: 10.3389/fnins.2021.639140

  76. De Silva. The Costoclavicular Syndrome: a New Cause. Annals of the Rheumatic Diseases. 1986. 45, 916-92

  77. Hacking,C. Internal Iliac Vein. Radiopedia 2021. https://radiopaedia.org/articles/internal-iliac-vein

  78. Pu T, Zou W, Feng W, Zhang Y, Wang L, Wang H, Xiao M. Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage. Exp Neurobiol. 2019 Feb;28(1):104-118. doi: 10.5607/en.2019.28.1.104. Epub 2019 Feb 28. PMID: 30853828; PMCID: PMC6401547

  79. Scholbach, T.: Diagnosis and treatment of vascular compression syndromes of the abdomen based on the anatomical features of man and gender-specific characteristics after puberty. https://scholbach.de/wp-content/uploads/2017/09/20170917-vascular-compression-syndromes-website.pdf

  80. Kabani Z, Ramos-Nino ME, Ramdass PVAK. Endometriosis and COVID-19: A Systematic Review and Meta-Analysis. Int J Mol Sci. 2022 Oct 26;23(21):12951. doi: 10.3390/ijms232112951. PMID: 36361745; PMCID: PMC9657778.

  81. Bashir ST, Redden CR, Raj K, Arcanjo RB, Stasiak S, Li Q, Steelman AJ, Nowak RA. Endometriosis leads to central nervous system-wide glial activation in a mouse model of endometriosis. J Neuroinflammation. 2023 Mar 6;20(1):59. doi: 10.1186/s12974-023-02713-0. PMID: 36879305; PMCID: PMC9987089.

  82. Su, W., Cui, H., Wu, D. et al. Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J Neuroinflammation 18, 65 (2021). https://doi.org/10.1186/s12974-020-02066-y

  83. Belna, S, Trotman,G, Gomez-Lobo,V. Endometriosis/Pelvic Pain Syndromes and Postural Tachycardia Syndrome: What is the Association and Treatment Implications? Journal of Pediatric & Adolescent Gynecology. 2014. https://doi.org/10.1016/j.jpag.2014.01.085

  84. Gaillard F, Alhusseiny K, Hacking C, et al. Celiac artery compression syndrome. Reference article, Radiopaedia.org. https://doi.org/10.53347/rID-1143 

  85. Peters, M., Syed,R., Katz,M.,Moscona., Press,C., Nijjar,V., Bisharat,M., Baldwin,D.: May-Thurner syndrome: a not so uncommon cause of a common condition, Proc (Bayl Univ Med Cent). 2012 Jul; 25(3): 231–233.

  86. Van Horne, N, Jackson, J. Superior Mesenteric Artery Syndrome. StatPearls. 2023. https://www.ncbi.nlm.nih.gov/books/NBK482209/#:~:text=Superior%20mesenteric%20artery%20(SMA)%20syndrome,and%20the%20superior%20mesenteric%20artery.

  87. Rajachandran, M.,Schainfeld,R.: Diagnosis and Treatment of May-Thurner Syndrome, Vascular Disease Management 2018. https://www.vasculardiseasemanagement.com/content/diagnosis-and-treatment-may-thurner-syndrome

  88. Jenssen,N et al. The Glymphatic System- A Beginners’s Guide. Neurochem Res. 2015 doi:10.1007/s11064-015-1581-6

  89. Lou, J et al. Neuropathology of COVID-19 (neuro-COVID): clinicopathological update. Free Neuropathol. 2021 January 18; 2: . doi:10.17879/freeneuropathology-2021-2993.

  90. Huang,L. et al: Health outcomes in people 2 years after surviving hospitalisation with COVID-19: a longitudinal cohort study. 2022. The Lancet Respiratory Medicine. https://doi.org/10.1016/S2213-2600(22)00126-6

  91. Yoo, Sun et al,: Factors Associated with Post-Acute Sequelae of SARS-CoV-2 (PASC) After Diagnosis of Symptomatic COVID-19 in the Inpatient and Outpatient Setting in a Diverse Cohort. 2022. J GenIntern Med DOI: 10.1007/s11606-022-07523-3

  92. Parasher,A. COVID-19: Current understanding of its Pathophysiology, Clinical presentation and Treatment. Postgraduate Medical Journal 2021;97:312

  93. Cecchini,R and Cecchini,A. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. 2020. https://doi.org/10.1016/j.mehy.2020.110102

  94. Ragab D, Salah Eldin H, Taeimah M, Khattab R and Salem R (2020) The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 11:1446. doi: 10.3389/fimmu.2020.01446

  95. Petrovic,V. et al.: Pathophysiology of Cardiovascular Complications in COVID-19. 2020. https://www.frontiersin.org/articles/10.3389/fphys.2020.575600/full

  96. Arga, G et al. SARS-CoV-2 infection showing signs of cerebral sinus vein thrombosis in the infantile period. Brain Disorders. 2022. https://doi.org/10.1016/j.dscb.2022.10005

  97. Thompson,A et al. Cerebral venous sinus thrombosis associated with COVID-19. Practical Neurology. BMJ Journals. 2021. http://dx.doi.org/10.1136/practneurol-2020-002678

  98. Mukherjee, R. et al. Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling inSARS-CoV-2 infection. 2021. JBC Research Article. https://www.sciencedirect.com/science/article/pii/S0021925821007250

  99. Rauch, L et al. Binding of phosphatidylserine-positive microparticles by PBMCs classifies disease severity in COVID-19 patients. 2021 bioRxiv. doi: https://doi.org/10.1101/2021.06.18.448935

  100. Fard,M et al: Thrombosis in COVID-19 Infection: Role of platelet activation-mediated immunity. Thrombosis Journal (2021) 19:59 https://doi.org/10.1186/s12959-021-00311

  101. Song J, da Costa KA, Fischer LM, Kohlmeier M, Kwock L, Wang S, Zeisel SH. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005 Aug;19(10):1266-71. doi: 10.1096/fj.04-3580com. PMID: 16051693; PMCID: PMC1256033.

  102. Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Review of Anticancer Therapy. 2022 Sep 2;22(9):957-80.

  103. Dwivedi,R. Researchers study COVID-19 immune dysfunction in relation to phosphatidylserine. https://www.news-medical.net/news/20210623/Researchers-study-COVID-19-immune-dysfunction-in-relation-to-phosphatidylserine.aspx

  104. Xie Y, Xu E, Bowe B, et al. Long-term cardiovascular outcomes of COVID-19. Nat Med 2022. https://doi.org/10.1038/s41591-022-01689-3

  105. Midena,E et al. Small Fibre Peripheral Alterations Following COVID-19 Detected by Corneal Confocal Microscopy. J Pers Med. 2022. doi: 10.3390/jpm12040563   

  106. Abrams,R et al. Small Fiber Neuropathy associated with SARS-CoV-2 Infection. Muscle Nerve. 2022. doi: 10.1002/mus.27458

  107. Afrin, Lawrence; Weinstock, Leonard; Molderings, Gerhard. Covid-19 Hyperinflammation and post-Covid 19 may be rooted in Mast Cell Activation Syndrome. 2020: International Journal of Infectious Diseases 100, 327-332.

  108. Weinstock,L., et al, Mast cell activation symptoms are prevalent inLong-COVID, 2021. International Journal of Infectious Diseases 112 (2021) 217-226 

  109. Kakavas,S. et al. The Complex Interplay between Immunonutrition, Mast Cells, and Histamine Signaling in COVID-19. 2021 Nutrients. https://doi.org/10.3390/nu13103458

  110. Filpa,V et al. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology. 2016. https://doi.org/10.1016/j.neuropharm.2016.08.024

  111. van Campen C, Verheugt F, Rowe PC et al (2020) Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: a quantitative, controlled study using Doppler echography. ClinNeurophysPract  2020. doi: 10.1016/j.cnp.2020.01.003. PMID: 32140630; PMCID: PMC7044650.

  112. De Silva, M. The Costoclavicular Syndrome: a “new cause.”Annals of Rheumatic Diseases, 1986; 45, 916-920

  113. Bulut,M et al. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis. 2016. Med Sci Monit; 22:495-500 https://medscimonit.com/abstract/index/idArt/897500

  114. Geddes JR, Ottesen JT, Mehlsen J, Olufsen MS. Postural orthostatic tachycardia syndrome explained using a baroreflex response model. J R Soc Interface. 2022 Aug;19(193):20220220. doi: 10.1098/rsif.2022.0220. Epub 2022 Aug 24. PMID: 36000360; PMCID: PMC9399868.

  115. Pirahanchi,Y, Bordoni, B. Anatomy,Head and Neck: Carotid Baroreceptors. StatPearls. 2023. https://www.ncbi.nlm.nih.gov/books/NBK537223/

  116. Dysautonomia. The Dysautonomia Project. https://thedysautonomiaproject.org/dysautonomia/

  117. van Campen CLMC, Rowe PC, Visser FC. Deconditioning does not explain orthostatic intolerance in ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome). J Transl Med. 2021 doi: 10.1186/s12967-021-02819-0. PMID: 33947430; PMCID: PMC8097965.

  118. Hoffham,R, Stiller,R. Resolution of Obstructive Sleep Apnea after Microvascular Brainstem Decompression. 1995. Chest Journal. https://journal.chestnet.org/article/S0012-3692(16)35002-4/fulltext

  119. Lundblad LC, Fatouleh RH, McKenzie DK, Macefield VG, Henderson LA. Brain stem activity changes associated with restored sympathetic drive following CPAP treatment in OSA subjects: a longitudinal investigation. J Neurophysiol. 2015 Aug;114(2):893-901. doi: 10.1152/jn.00092.2015. Epub 2015 May 20. PMID: 25995345; PMCID: PMC4533106.

  120. Filchenko,I et al. Brainstem Strokes with Increased Obstructive Apnea Index during Sleep acutely after stroke. European Respiratory Journal 2021. DOI: 10.1183/13993003.congress-2021.PA943

  121. Brown DL, McDermott M, Mowla A, De Lott L, Morgenstern LB, Kerber KA, Hegeman G 3rd, Smith MA, Garcia NM, Chervin RD, Lisabeth LD. Brainstem infarction and sleep-disordered breathing in the BASIC sleep apnea study. Sleep Med. 2014 Aug;15(8):887-91. doi: 10.1016/j.sleep.2014.04.003. Epub 2014 May 2. PMID: 24916097; PMCID: PMC4117733.

  122. Sullan MJ, Asken BM, Jaffee MS, DeKosky ST, Bauer RM. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci Biobehav Rev. 2018 Jan;84:316-324. doi: 10.1016/j.neubiorev.2017.08.016. Epub 2017 Aug 30. PMID: 28859995.

  123. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010 Nov 11;468(7321):232-43. doi: 10.1038/nature09613. PMID: 21068832; PMCID: PMC3206737.

  124. Wei,D, Morrison,E. Histology, Astrocytes. StatPearls. 2023. https://www.ncbi.nlm.nih.gov/books/NBK545142/#:~:text=Astrocytes%20are%20a%20subtype%20of,barrier%2C%20and%20promoting%20synapse%20formation.

  125. Theoharides,T, Twahir,A, Kempuraj,D. Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation. Annals of Allergy, Asthma & Immunology. 2023. https://doi.org/10.1016/j.anai.2023.10.032

  126. Li,A, Yang,K, Lin,W. Glutamatergic Dysfunction and Glutamatergic Compounds for Major Psychiatric Disorders: Evidence from Clinical Neuroimaging Studies. Front.Psychiatry. 2019. https://www.frontiersin.org/articles/10.3389/fpsyt.2018.00767/full

  127. Harris RE. Elevated excitatory neurotransmitter levels in the fibromyalgia brain. Arthritis Res Ther. 2010;12(5):141. doi: 10.1186/ar3136. Epub 2010 Oct 1. PMID: 20959024; PMCID: PMC2991003.

  128. Theoharides,T, Twahir,A, Kempuraj,D. Mast Cells in the Autonomic Nervous System and Potential Role in Disorders with Dysautonomia and Neuroinflammation. Annals of Allergy, Asthma & Immunology. 2023. https://doi.org/10.1016/j.anai.2023.10.032

  129. Kalyoncu A, Gonul AS. The Emerging Role of SPECT Functional Neuroimaging in Schizophrenia and Depression. Front Psychiatry. 2021 Dec 15;12:716600. doi: 10.3389/fpsyt.2021.716600. PMID: 34975556; PMCID: PMC8714796.

  130. Huang,S, Fishell,G. In SARS-CoV-2, astrocytes are in for the long haul. PNAS, 2022. https://www.pnas.org/doi/full/10.1073/pnas.2209130119

  131. Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front Neurosci. 2022 Feb 16;16:824888. doi: 10.3389/fnins.2022.824888. PMID: 35250459; PMCID: PMC8888691.

  132. Gunning WT 3rd, Kvale H, Kramer PM, Karabin BL, Grubb BP. Postural Orthostatic Tachycardia Syndrome Is Associated With Elevated G-Protein Coupled Receptor Autoantibodies. J Am Heart Assoc. 2019 Sep 17;8(18):e013602. doi: 10.1161/JAHA.119.013602. Epub 2019 Sep 9. PMID: 31495251; PMCID: PMC6818019.

  133. Cole S. Bowdino; Justin Owens; Palma M. Shaw.Anatomy, Abdomen and Pelvis, Renal Veins, 2023. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK538298/

  134. Alim MA, Grujic M, Ackerman PW, Kristiansson P, Eliasson P, Peterson M, Pejler G. Glutamate triggers the expression of functional ionotropic and metabotropic glutamate receptors in mast cells. Cell Mol Immunol. 2021 Oct;18(10):2383-2392. doi: 10.1038/s41423-020-0421-z. Epub 2020 Apr 20. Erratum in: Cell Mol Immunol. 2020 Sep 3;: PMID: 32313211; PMCID: PMC8484602.

  135. Xia M, Sui Z. Recent developments in CCR2 antagonists. Expert Opin Ther Pat. 2009 Mar;19(3):295-303. doi: 10.1517/13543770902755129. PMID: 19441905.

  136. Banisadr,G et al. Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. Journal of Comparative Neurology. 2005. doi: 10.1002/cne.20598

  137. Zhang,P et al. Enhanced Glial Reaction and Altered Neuronal Nitric Oxide Synthase are Implicated in Attention Deficit Hyperactivity Disorder. Front. Cell Dev. Biol, 2022. https://doi.org/10.3389/fcell.2022.901093

  138. Langan, M.T., Kirkland, A.E., Rice, L.C. et al. Low glutamate diet improves working memory and contributes to altering BOLD response and functional connectivity within working memory networks in Gulf War Illness. Sci Rep 12, 18004 (2022). https://doi.org/10.1038/s41598-022-21837-6

  139. Brandley,E, Kirkland, A, Baron,M, Baraniuk, J, Holton,K. The Effect of the Low Glutamate Diet on the Reduction of Psychaitric Symptoms in Veterans with Gulf War Illness: A Pilot Randomized-Controlled Trial. Front. Psychiatry. 2022. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.926688/full

  140. 140. Romanos J, Benke D, Pietrobon D, Zeilhofer HU, Santello M. Astrocyte dysfunction increases cortical dendritic excitability and promotes cranial pain in familial migraine. Sci Adv. 2020 Jun 5;6(23):eaaz1584. doi: 10.1126/sciadv.aaz1584. PMID: 32548257; PMCID: PMC7274778.

  141. Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun. 2021 doi: 10.1016/j.bbi.2020.10.007.

  142. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016 Jan;16(1):22-34. doi: 10.1038/nri.2015.5. PMID: 26711676; PMCID: PMC5542678

  143. Knight,M. The IDO Pathway. News Medical Life Sciences. https://www.news-medical.net/life-sciences/The-IDO-Pathway.aspx

  144. Ho KKF, Walker P, Smithers BM, Foster W, Nathanson L, O'Rourke N, Shaw I, McGahan T. Outcome predictors in median arcuate ligament syndrome. J Vasc Surg. 2017 Jun;65(6):1745-1752. doi: 10.1016/j.jvs.2016.11.040. Epub 2017 Feb 8. PMID: 28189355.

  145. Clough E, Inigo J, Chandra D, Chaves L, Reynolds JL, Aalinkeel R, Schwartz SA, Khmaladze A, Mahajan SD. Mitochondrial Dynamics in SARS-COV2 Spike Protein Treated Human Microglia: Implications for Neuro-COVID. J Neuroimmune Pharmacol. 2021 Dec;16(4):770-784. doi: 10.1007/s11481-021-10015-6. Epub 2021 Oct 2. Erratum in: J Neuroimmune Pharmacol. 2021 Dec 11;: PMID: 34599743; PMCID: PMC8487226.

  146. Lai PC, Yen CM, Lin MC, Chen YH, Liao HY, Huang YW, Lin YW. Electroacupuncture Attenuates Fibromyalgia Pain via Toll-like Receptor 4 in the Mouse Brain. Life (Basel). 2023 May 11;13(5):1160. doi: 10.3390/life13051160. PMID: 37240805; PMCID: PMC10222451.

  147. Liao HY, Lin YW. Electroacupuncture reduces cold stress-induced pain through microglial inactivation and transient receptor potential V1 in mice. Chin Med. 2021 Jun 3;16(1):43. doi: 10.1186/s13020-021-00451-0. PMID: 34082798; PMCID: PMC8173787.

  148. Humm AM, Bostock H, Troller R, Z'Graggen WJ. Muscle ischaemia in patients with orthostatic hypotension assessed by velocity recovery cycles. J Neurol Neurosurg Psychiatry. 2011 Dec;82(12):1394-8. doi: 10.1136/jnnp-2011-300444. Epub 2011 Jun 7. PMID: 21653205.

  149. Vittone,V, Exelby, G. DNA Mutations that Underpin POTS and Long Covid. 2023. https://www.mcmc-research.com/post/dna-mutations-that-underpin-pots-and-long-covid

  150. Carthy, Elliott & Ellender, Tommas. (2021). Histamine, Neuroinflammation and Neurodevelopment: A Review. Frontiers in Neuroscience. 15. 10.3389/fnins.2021.680214

  151. Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm. 2021 Jan 14;2021:8874339. doi: 10.1155/2021/8874339. PMID: 33505220; PMCID: PMC7811571.

  152. van der Donk LEH, Bermejo-Jambrina M, van Hamme JL, Volkers MMW, van Nuenen AC, Kootstra NA, Geijtenbeek TBH. SARS-CoV-2 suppresses TLR4-induced immunity by dendritic cells via C-type lectin receptor DC-SIGN. PLoS Pathog. 2023 Oct 16;19(10):e1011735. doi: 10.1371/journal.ppat.1011735. PMID: 37844099; PMCID: PMC10602378.

  153. Sariol, A., Perlman, S. SARS-CoV-2 takes its Toll. Nat Immunol 22, 801–802 (2021). https://doi.org/10.1038/s41590-021-00962-w

  154. NF-κB. Wikipedia. https://en.wikipedia.org/wiki/NF-%CE%BAB

  155. Biotoxins (indoor damp and mould) Clinical Pathway - Australian Government Department of Health and Aged Care. 2023.https://www.health.gov.au/resources/publications/biotoxins-indoor-damp-and-mould-clinical-pathway?language=en

  156. Chai LY, Kullberg BJ, Vonk AG, Warris A, Cambi A, Latgé JP, Joosten LA, van der Meer JW, Netea MG. Modulation of Toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect Immun. 2009 May;77(5):2184-92. doi: 10.1128/IAI.01455-08. Epub 2009 Feb 9. PMID: 19204090; PMCID: PMC2681752.

  157. Mantovani S, Oliviero B, Varchetta S, Renieri A, Mondelli MU. TLRs: Innate Immune Sentries against SARS-CoV-2 Infection. Int J Mol Sci. 2023 Apr 29;24(9):8065. doi: 10.3390/ijms24098065. PMID: 37175768; PMCID: PMC10178469.

  158. Cayla M Fappiano, James N Baraniuk, Gulf War Illness Symptom Severity and Onset: A Cross-Sectional Survey, Military Medicine, Volume 185, Issue 7-8, July-August 2020, Pages e1120–e1127, https://doi.org/10.1093/milmed/usz471

  159. Baraniuk, J.N.; Amar, A.; Pepermitwala, H.; Washington, S.D. Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Brain Sci. 202212, 78. https://doi.org/10.3390/brainsci12010078

  160. Sariol, A., Perlman, S. SARS-CoV-2 takes its Toll. Nat Immunol 22, 801–802 (2021). https://doi.org/10.1038/s41590-021-00962-w

  161. Aboudounya MM, Heads RJ. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm. 2021 Jan 14;2021:8874339. doi: 10.1155/2021/8874339. PMID: 33505220; PMCID: PMC7811571.

  162. van der Donk LEH, Bermejo-Jambrina M, van Hamme JL, Volkers MMW, van Nuenen AC, Kootstra NA, Geijtenbeek TBH. SARS-CoV-2 suppresses TLR4-induced immunity by dendritic cells via C-type lectin receptor DC-SIGN. PLoS Pathog. 2023 Oct 16;19(10):e1011735. doi: 10.1371/journal.ppat.1011735. PMID: 37844099; PMCID: PMC10602378.

  163. Reveret, L., Leclerc, M., Emond, V. et al. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer’s disease. acta neuropathol commun 11, 159 (2023). https://doi.org/10.1186/s40478-023-01647-1

  164. Verkhratsky, A., Butt, A., Li, B. et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Sig Transduct Target Ther 8, 396 (2023). https://doi.org/10.1038/s41392-023-01628-9

  165. Biotoxins (indoor damp and mould) Clinical Pathway - Australian Government Department of Health and Aged Care. 2023.https://www.health.gov.au/resources/publications/biotoxins-indoor-damp-and-mould-clinical-pathway?language=en

  166. Chai LY, Kullberg BJ, Vonk AG, Warris A, Cambi A, Latgé JP, Joosten LA, van der Meer JW, Netea MG. Modulation of Toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect Immun. 2009 May;77(5):2184-92. doi: 10.1128/IAI.01455-08. Epub 2009 Feb 9. PMID: 19204090; PMCID: PMC2681752.

  167. NF-κB. Wikipedia. https://en.wikipedia.org/wiki/NF-%CE%BAB

  168. Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021 Feb 18;184(4):861-880. doi: 10.1016/j.cell.2021.01.007. Epub 2021 Jan 12. PMID: 33497610; PMCID: PMC7803150.

  169. Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells. 2023 Feb 22;12(5):688. doi: 10.3390/cells12050688. PMID: 36899824; PMCID: PMC10001285.

  170. Bayat AH, Azimi H, Hassani Moghaddam M, Ebrahimi V, Fathi M, Vakili K, Mahmoudiasl GR, Forouzesh M, Boroujeni ME, Nariman Z, Abbaszadeh HA, Aryan A, Aliaghaei A, Abdollahifar MA. COVID-19 causes neuronal degeneration and reduces neurogenesis in human hippocampus. Apoptosis. 2022 Dec;27(11-12):852-868. doi: 10.1007/s10495-022-01754-9. Epub 2022 Jul 25. PMID: 35876935; PMCID: PMC9310365.

  171. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012 Apr;122(4):1164-71. doi: 10.1172/JCI58644. Epub 2012 Apr 2. PMID: 22466658; PMCID: PMC3314450.

  172. Gunning WT 3rd, Kvale H, Kramer PM, Karabin BL, Grubb BP. Postural Orthostatic Tachycardia Syndrome Is Associated With Elevated G-Protein Coupled Receptor Autoantibodies. J Am Heart Assoc. 2019 Sep 17;8(18):e013602. doi: 10.1161/JAHA.119.013602. Epub 2019 Sep 9. PMID: 31495251; PMCID: PMC6818019.

  173. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010 Nov 11;468(7321):232-43. doi: 10.1038/nature09613. PMID: 21068832; PMCID: PMC3206737.

  174. Zhang,P et al. Enhanced Glial Reaction and Altered Neuronal Nitric Oxide Synthase are Implicated in Attention Deficit Hyperactivity Disorder. Front. Cell Dev. Biol, 2022. https://doi.org/10.3389/fcell.2022.901093

  175. Steardo L Jr, Steardo L, Scuderi C. Astrocytes and the Psychiatric Sequelae of COVID-19: What We Learned from the Pandemic. Neurochem Res. 2023 Apr;48(4):1015-1025. doi: 10.1007/s11064-022-03709-7. Epub 2022 Aug 3. PMID: 35922744; PMCID: PMC9362636.

  176. Phulwani NK, Esen N, Syed MM, Kielian T. TLR2 expression in astrocytes is induced by TNF-alpha- and NF-kappa B-dependent pathways. J Immunol. 2008 Sep 15;181(6):3841-9. doi: 10.4049/jimmunol.181.6.3841. PMID: 18768838; PMCID: PMC2649826.

  177. Savelieff MG, Feldman EL, Stino AM. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol Dis. 2022 Jun 15;168:105715. doi: 10.1016/j.nbd.2022.105715. Epub 2022 Mar 29. PMID: 35364273; PMCID: PMC8963977.

  178. Langan, M.T., Kirkland, A.E., Rice, L.C. et al. Low glutamate diet improves working memory and contributes to altering BOLD response and functional connectivity within working memory networks in Gulf War Illness. Sci Rep 12, 18004 (2022). https://doi.org/10.1038/s41598-022-21837-6

  179. Brandley,E, Kirkland, A, Baron,M, Baraniuk, J, Holton,K. The Effect of the Low Glutamate Diet on the Reduction of Psychaitric Symptoms in Veterans with Gulf War Illness: A Pilot Randomized-Controlled Trial. Front. Psychiatry. 2022. https://www.frontiersin.org/articles/10.3389/fpsyt.2022.926688/full

  180. Romanos J, Benke D, Pietrobon D, Zeilhofer HU, Santello M. Astrocyte dysfunction increases cortical dendritic excitability and promotes cranial pain in familial migraine. Sci Adv. 2020 Jun 5;6(23):eaaz1584. doi: 10.1126/sciadv.aaz1584. PMID: 32548257; PMCID: PMC7274778.

  181. Oya M, Matsuoka K, Kubota M, Fujino J, Tei S, Takahata K, Tagai K, Yamamoto Y, Shimada H, Seki C, Itahashi T, Aoki YY, Ohta H, Hashimoto RI, Sugihara G, Obata T, Zhang MR, Suhara T, Nakamura M, Kato N, Takado Y, Takahashi H, Higuchi M. Increased glutamate and glutamine levels and their relationship to astrocytes and dopaminergic transmissions in the brains of adults with autism. Sci Rep. 2023 Jul 19;13(1):11655. doi: 10.1038/s41598-023-38306-3. PMID: 37468523; PMCID: PMC10356952.

  182. Gzielo,K, Nikiforuk,A. Astroglia in Autism Spectrum Disorder. International Journal of Molecular Sciences. 2021. https://doi.org/10.3390/ijms222111544

  183. Allen, M., Huang, B.S., Notaras, M.J. et al. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Mol Psychiatry 27, 2470–2484 (2022). https://doi.org/10.1038/s41380-022-01486-x

  184. Wechler,J. et al.: Mast cell activation is associated with post-acute COVID-19 syndrome. Allergy. 2021. https://onlinelibrary.wiley.com/doi/10.1111/all.15188

  185. Malone,R. et al. Covid-19: Famotidine,Histamine,Mast Cells and Mechanisms. 2021. Frontiers in Pharmacology, https://www.frontiersin.org/articles/10.3389/fphar.2021.633680/full

  186. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Mol Neurobiol. 2017 Mar;54(2):997-1007. doi: 10.1007/s12035-016-9720-x. Epub 2016 Jan 21. PMID: 26797518 

  187. Waldhauer, I., Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008). https://doi.org/10.1038/onc.2008.267

  188. Kim, Y., Shin, E. Type I and III Interferon Responses in SARS-CoV-2 Infection. 2021. Experimental & Molecular Medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099704/

  189. Lee,J., Shin,E. The Type I Interferon Response in COVID-19: Implications for Treatment. 2020. Nature Reviews. Immunology. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824445/

  190. Cheetham NJ, Penfold R, Giunchiglia V, Bowyer V, Sudre CH, Canas LS, Deng J, Murray B, Kerfoot E, Antonelli M, Rjoob K, Molteni E, Österdahl MF, Harvey NR, Trender WR, Malim MH, Doores KJ, Hellyer PJ, Modat M, Hammers A, Ourselin S, Duncan EL, Hampshire A, Steves CJ. The effects of COVID-19 on cognitive performance in a community-based cohort: a COVID symptom study biobank prospective cohort study. EClinicalMedicine. 2023 Jul 21;62:102086. doi: 10.1016/j.eclinm.2023.102086. PMID: 37654669; PMCID: PMC10466229.

  191. Pretorius,E. et al.: Persistent clotting protein pathology in Long COVID/Post‑Acute Sequelae of COVID‑19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol (2021) 20:172. https://doi.org/10.1186/s12933-021-01359-7

  192. Pretorius et al.: Prevalence of Amyloid Blood Clots in COVID-19 in plasma. https://www.researchgate.net/publication/343313974_Prevalence_of_amyloid_blood_clots_in_COVID-19_plasma

  193. Bell, D., Laubscher, G., Pretorius, E.: A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J (2022) 479 (4): 537–559. https://doi.org/10.1042/BCJ20220016

  194. Sarkar S, Karmakar S, Basu M, Ghosh P, Ghosh MK. Neurological damages in COVID-19 patients: Mechanisms and preventive interventions. MedComm (2020). 2023 Apr 6;4(2):e247. doi: 10.1002/mco2.247. PMID: 37035134; PMCID: PMC10080216.

  195. Granholm AC. Long-Term Effects of SARS-CoV-2 in the Brain: Clinical Consequences and Molecular Mechanisms. J Clin Med. 2023 Apr 28;12(9):3190. doi: 10.3390/jcm12093190. PMID: 37176630; PMCID: PMC10179128.

  196. Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022 Nov;28(11):2406-2415. doi: 10.1038/s41591-022-02001-z. Epub 2022 Sep 22. PMID: 36138154; PMCID: PMC9671811.

  197. Plantone D, Locci S, Bergantini L, et al. Brain neuronal and glial damage during acute COVID-19 infection in absence of clinical neurological manifestations. Journal of Neurology, Neurosurgery & Psychiatry 2022;93:1343-1348.

  198. Savelieff MG, Feldman EL, Stino AM. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiol Dis. 2022 Jun 15;168:105715. doi: 10.1016/j.nbd.2022.105715. Epub 2022 Mar 29. PMID: 35364273; PMCID: PMC8963977.

  199. Betteridge DJ. What is oxidative stress? Metabolism. 2000 Feb;49(2 Suppl 1):3-8. doi: 10.1016/s0026-0495(00)80077-3. PMID: 10693912.

  200. Reiss AB, Greene C, Dayaramani C, Rauchman SH, Stecker MM, De Leon J, Pinkhasov A. Long COVID, the Brain, Nerves, and Cognitive Function. Neurol Int. 2023 Jul 6;15(3):821-841. doi: 10.3390/neurolint15030052. PMID: 37489358; PMCID: PMC10366776.

  201. Reveret, L., Leclerc, M., Emond, V. et al. Higher angiotensin-converting enzyme 2 (ACE2) levels in the brain of individuals with Alzheimer’s disease. acta neuropathol commun 11, 159 (2023). https://doi.org/10.1186/s40478-023-01647-1

  202. Fard,M et al: Thrombosis in COVID-19 Infection: Role of platelet activation-mediated immunity. Thrombosis Journal (2021) 19:59 https://doi.org/10.1186/s12959-021-00311-9

  203. Guo L, Rondina MT. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases. Front Immunol. 2019 Sep 13;10:2204. doi: 10.3389/fimmu.2019.02204. PMID: 31572400; PMCID: PMC6753373.

  204. Guillevin L, Dörner T. Vasculitis: mechanisms involved and clinical manifestations. Arthritis Res Ther. 2007;9 Suppl 2(Suppl 2):S9. doi: 10.1186/ar2193. PMID: 17767747; PMCID: PMC2072881.

  205. Giryes S, Bragazzi NL, Bridgewood C, De Marco G, McGonagle D. COVID-19 Vasculitis and vasculopathy-Distinct immunopathology emerging from the close juxtaposition of Type II Pneumocytes and Pulmonary Endothelial Cells. Semin Immunopathol. 2022 May;44(3):375-390. doi: 10.1007/s00281-022-00928-6. Epub 2022 Apr 12. PMID: 35412072; PMCID: PMC9003176.

  206. Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol. 2023 Nov 24;14:1264889. doi: 10.3389/fimmu.2023.1264889. PMID: 38077393; PMCID: PMC10704247.

  207. Jin, S., Kim, J., Park, J. et al. Hypothalamic TLR2 triggers sickness behavior via a microglia-neuronal axis. Sci Rep 6, 29424 (2016). https://doi.org/10.1038/srep29424

  208. Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav Immun. 2021 Jan;91:740-755. doi: 10.1016/j.bbi.2020.10.007. Epub 2020 Oct 8. PMID: 33039660; PMCID: PMC7543714.

  209. Verkhratsky, A., Butt, A., Li, B. et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Sig Transduct Target Ther 8, 396 (2023). https://doi.org/10.1038/s41392-023-01628-9

  210. Hotowitz,T, Pellurin,L, Zimmer, E, Guedj,E. Brain fog in long COVID: A glutamatergic hypothesis with astrocyte dysfunction accounting for brain PET glucose hypometabolism. Elsevier, Medical Hypotheses. https://doi.org/10.1016/j.mehy.2023.111186

  211. Ronald Zielman, Jannie P. Wijnen, Andrew Webb, Gerrit L. J. Onderwater, Itamar Ronen, Michel D. Ferrari, Hermien E. Kan, Gisela M. Terwindt, Mark C. Kruit, Cortical glutamate in migraine, Brain, Volume 140, Issue 7, July 2017, Pages 1859–1871, https://doi.org/10.1093/brain/awx130

  212. Li Y, Ji M, Yang J. Current Understanding of Long-Term Cognitive Impairment After Sepsis. Front Immunol. 2022 May 6;13:855006. doi: 10.3389/fimmu.2022.855006. PMID: 35603184; PMCID: PMC9120941.

  213. Hampshire A, Trender W, Chamberlain SR, Jolly AE, Grant JE, Patrick F, Mazibuko N, Williams SC, Barnby JM, Hellyer P, Mehta MA. Cognitive deficits in people who have recovered from COVID-19. EClinicalMedicine. 2021 Sep;39:101044. doi: 10.1016/j.eclinm.2021.101044. Epub 2021 Jul 23. PMID: 34316551; PMCID: PMC8298139.

  214. Zheng Z, Zhu T, Qu Y, Mu D. Blood Glutamate Levels in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. PLoS One. 2016 Jul 8;11(7):e0158688. doi: 10.1371/journal.pone.0158688. PMID: 27390857; PMCID: PMC4938426.

  215. Maltezos S, Horder J, Coghlan S, Skirrow C, O'Gorman R, Lavender TJ, Mendez MA, Mehta M, Daly E, Xenitidis K, Paliokosta E, Spain D, Pitts M, Asherson P, Lythgoe DJ, Barker GJ, Murphy DG. Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry. 2014 Mar 18;4(3):e373. doi: 10.1038/tp.2014.11. PMID: 24643164; PMCID: PMC3966039.

  216. Cheng, J., Liu, A., Shi, M. et al. Disrupted Glutamatergic Transmission in Prefrontal Cortex Contributes to Behavioral Abnormality in an Animal Model of ADHD. Neuropsychopharmacol 42, 2096–2104 (2017). https://doi.org/10.1038/npp.2017.30

  217. Bathel, A., Schweizer, L., Stude, P. et al. Increased thalamic glutamate/glutamine levels in migraineurs. J Headache Pain 19, 55 (2018). https://doi.org/10.1186/s10194-018-0885-8

  218. Exelby, G. The Glymphatic System. 2023. https://www.mcmc-research.com/post/the-glymphatic-system

  219. Szlufik S, Kopeć K, Szleszkowski S, Koziorowski D. Glymphatic System Pathology and Neuroinflammation as Two Risk Factors of Neurodegeneration. Cells. 2024 Feb 5;13(3):286. doi: 10.3390/cells13030286. PMID: 38334678; PMCID: PMC10855155.

  220. Joseph P, Singh I, Oliveira R, Capone CA, Mullen MP, Cook DB, Stovall MC, Squires J, Madsen K, Waxman AB, Systrom DM. Exercise Pathophysiology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Postacute Sequelae of SARS-CoV-2: More in Common Than Not? Chest. 2023 Sep;164(3):717-726. doi: 10.1016/j.chest.2023.03.049. Epub 2023 Apr 11. PMID: 37054777; PMCID: PMC10088277.

  221. Malengier-Devlies B, Filtjens J, Ahmadzadeh K, Boeckx B, Vandenhaute J, De Visscher A, Bernaerts E, Mitera T, Jacobs C, Vanderbeke L, Van Mol P, Van Herck Y, Hermans G, Meersseman P, Wilmer A, Gouwy M, Garg AD, Humblet-Baron S, De Smet F, Martinod K, Wauters E, Proost P, Wouters C, Leclercq G, Lambrechts D, Wauters J, Matthys P. Severe COVID-19 patients display hyper-activated NK cells and NK cell-platelet aggregates. Front Immunol. 2022 Oct 5;13:861251. doi: 10.3389/fimmu.2022.861251. PMID: 36275702; PMCID: PMC9581751.

  222. Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol. 2022 Jun 30;13:888248. doi: 10.3389/fimmu.2022.888248. PMID: 35844604; PMCID: PMC9279859.

  223. van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci. 2020 Sep 1;21(17):6351. doi: 10.3390/ijms21176351. PMID: 32883007; PMCID: PMC7503862.

  224. Wang J, Zhang F, Xu H, Yang H, Shao M, Xu S, Lyu F. TLR4 aggravates microglial pyroptosis by promoting DDX3X-mediated NLRP3 inflammasome activation via JAK2/STAT1 pathway after spinal cord injury. Clin Transl Med. 2022 Jun;12(6):e894. doi: 10.1002/ctm2.894. PMID: 35692100; PMCID: PMC9189419.

  225. Manik,M., Singh,R. Role of toll-like receptors in modulation of cytokine storm signalling in SARS_CoV-2-induced COVID-19. (2021) Journal of Medical Virology. DOI: 10.1002/jmv.27405

  226. Carter, D. T Cells, B Cells and the Immune System. University of Texas MD Anderson Cancer Center. https://www.mdanderson.org/cancerwise/t-cells--b-cells-and-the-immune-system.h00-159465579.html

  227. Waldhauer, I., Steinle, A. NK cells and cancer immunosurveillance. Oncogene 27, 5932–5943 (2008). https://doi.org/10.1038/onc.2008.267

  228. Hung Y, Lin WH, Lin CS, Cheng SM, Tsai TN, Yang SP, Lin WY. The Prognostic Role of QTc Interval in Acute Myocarditis. Acta Cardiol Sin. 2016 Mar;32(2):223-30. doi: 10.6515/acs20150226a. PMID: 27122953; PMCID: PMC4816921.

  229. Etheridge SP, Asaki SY. COVID-19 Infection and Corrected QT Interval Prolongation—Collateral Damage From Our Newest Enemy. JAMA Netw Open. 2021;4(4):e217192. doi:10.1001/jamanetworkopen.2021.7192

  230. Ebel, T. Your Baby’s Tongue Tie. 2023. https://www.thrivefamchiropractic.com/your-babys-tongue-tie/

  231. Zhao C, Wang C, Zhang H, Yan W. A mini-review of the role of vesicular glutamate transporters in Parkinson's disease. Front Mol Neurosci. 2023 May 11;16:1118078. doi: 10.3389/fnmol.2023.1118078. PMID: 37251642; PMCID: PMC10211467.

  232. Kelmendi B, Adams TG, Yarnell S, Southwick S, Abdallah CG, Krystal JH. PTSD: from neurobiology to pharmacological treatments. Eur J Psychotraumatol. 2016 Nov 8;7:31858. doi: 10.3402/ejpt.v7.31858. PMID: 27837583; PMCID: PMC5106865.

  233. Averill LA, Jiang L, Purohit P, Coppoli A, Averill CL, Roscoe J, Kelmendi B, De Feyter HM, de Graaf RA, Gueorguieva R, Sanacora G, Krystal JH, Rothman DL, Mason GF, Abdallah CG. Prefrontal Glutamate Neurotransmission in PTSD: A Novel Approach to Estimate Synaptic Strength in Vivo in Humans. Chronic Stress (Thousand Oaks). 2022 Apr 11;6:24705470221092734. doi: 10.1177/24705470221092734. PMID: 35434443; PMCID: PMC9008809.

8 views0 comments

Recent Posts

See All
bottom of page